Chapter 6
Data Types

6.1 Introduction 236

6.2 Primitive Data Types 238
6.3 Character String Types 242
6.4 Enumeration Types 247

6.5 Array Types 250

6.6 Associative Arrays 261

6.7 Record Types 263

6.8 Tuple Types 266

6.9 List Types 268

6.10 Union Types 270

6.11 Pointer and Reference Types 273
6.12 Optional Types 285

6.13 Type Checking 286

6.14 Strong Typing 287

6.15 Type Equivalence 288

6.16 Theory and Data Types 292

Summary ¢ Bibliographic Notes ¢ Review Questions ¢ Problem Set e

Programming Exercises 294

CMPS401 Class Notes (Chap06) Page 1/ 36

Dr. Kuo-pao Yang

Chapter 6
Data Types

6.1 Introduction 236

e A data type defines a collection of data values and a set of predefined operations on those
values.

e Computer programs produce results by manipulating data.

e ALGOL 68 provided a few basic types and a few flexible structure-defining operators that
allow a programmer to design a data structure for each need.

e A descriptor is the collection of the attributes of a variable.

e In an implementation a descriptor is a collection of memory cells that store variable
attributes.

e |f the attributes are static, descriptor are required only at compile time.

e These descriptors are built by the compiler, usually as a part of the symbol table, and are
used during compilation.

e For dynamic attributes, part or all of the descriptor must be maintained during execution.

e Descriptors are used for type checking and by allocation and deallocation operations.

6.2 Primitive Data Types 238

e Those not defined in terms of other data types are called primitive data types.
e Almost all programming languages provide a set of primitive data types.
e Some primitive data types are merely reflections of the hardware — for example, most integer

types.
e The primitive data types of a language are used, along with one or more type constructors.

6.2.1 Numeric Types

e Integer

— The most common primitive numeric data type is integer.

— The hardware of many computers supports several sizes of integers.

— These sizes of integers, and often a few others, are supported by some programming
languages.

— Java includes four signed integer sizes: byte, short, int, and long.

— C++ and C#, include unsigned integer types, which are types for integer values without
sings.

CMPS401 Class Notes (Chap06) Page 2/ 36 Dr. Kuo-pao Yang

e Floating-point

Model real numbers, but only as approximations for most real values.

On most computers, floating-point numbers are stored in binary, which exacerbates the
problem.

Another problem is the loss of accuracy through arithmetic operations.

Languages for scientific use support at least two floating-point types; sometimes more
(e.g. float, and double.)

The collection of values that can be represented by a floating-point type is defined in
terms of precision and range.

Precision: is the accuracy of the fractional part of a value, measured as the number of
bits. Figure below shows single and double precision.

Range: is the range of fractions and exponents.

8 bits 23 bits
Exponent Fraction
tkﬁgnbn
(@)
11 bits 52 bits
Exponent Fraction
tSign bit
(b)

Figure 6.1 IEEE floating-point formats: (a) single precision, (b) double precision

e Complex

Some languages support a complex type: e.g., Fortran and Python
Each value consists of two floats: the real part and the imaginary part
Literal form (in Python):

(7 + 373)
where 7 is the real part and 3 is the imaginary part

e Decimal

Most larger computers that are designed to support business applications have hardware
support for decimal data types

Decimal types store a fixed number of decimal digits, with the decimal point at a fixed
position in the value

These are the primary data types for business data processing and are therefore essential
to COBOL

Advantage: accuracy of decimal values

Disadvantages: limited range since no exponents are allowed, and its representation
wastes memory

CMPS401 Class Notes (Chap06) Page 3/ 36 Dr. Kuo-pao Yang

6.2.2 Boolean Types

e Boolean Types

Introduced by ALGOL 60

They are used to represent switched and flags in programs

The use of Booleans enhances readability

Range of values: two elements, one for “true” and one for “false”

One popular exception is C89, in which numeric expressions are used as conditionals. In
such expressions, all operands with nonzero values are considered true, and zero is
considered false

A Boolean value could be represented by a single bit, but often statured in the smallest
efficiently addressable cell of memory, typically a byte

6.2.3 Character Types

e Character Types

Char types are stored as numeric codings (ASCII / Unicode)

Traditionally, the most commonly used coding was the 8-bit code ASCIlI (American
Standard Code for Information Interchange)

An alternative, 16-bit coding: Unicode (UCS-2)

Java was the first widely used language to use the Unicode character set. Since then, it
has found its way into JavaScript, Python, Perl, C# and F#

After 1991, the Unicode Consortium, in cooperation with the International Standards
Organization (ISO), developed a 4-byte character code named UCS-4 or UTF-32, which
is described in the ISO/IEC 10646 Standard, published in 2000

CMPS401 Class Notes (Chap06) Page 4/ 36 Dr. Kuo-pao Yang

6.3 Character String Types 242

e A character string type is one in which values are sequences of characters

6.3.1 Design Issues

e The two most important design issues:
— Is it a primitive type or just a special kind of array?
— Is the length of objects static or dynamic?

6.3.2 String and Their Operations

e Typical operations:
— Assignment
— Comeparison (=, >, etc.)
Catenation
Substring reference
— Pattern matching
e C and C++ use char arrays to store char strings and provide a collection of string operations
through a standard library whose header is string.h
e Character string are terminated with a special character, null, with is represented with zero
e How is the length of the char string decided?
The null char which is represented with 0
- Ex:

char str[] = “apples”;

= In this example, str is an array of char elements, specifically applesO, where 0 is the
null character
e Some of the most commonly used library functions for character strings in C and C++ are
— strcpy: copy strings
— strcat: catenates on given string onto another
— strcmp:lexicographically compares (the order of their codes) two strings
— strlen: returns the number of characters, not counting the null
e In Java, strings are supported by String class, whose value are constant string, and the
StringBuffer class whose value are changeable and are more like arrays of single characters
e C# and Ruby include string classes that are similar to those of Java
e Python strings are immutable, similar to the String class objects of Java

CMPS401 Class Notes (Chap06) Page 5/ 36 Dr. Kuo-pao Yang

6.3.3 String Length Options

e Static Length String: The length can be static and set when the string is created. This is the
choice for the immutable objects of Java’s String class as well as similar classes in the C++
standard class library and the .NET class library available to C# and F#

e Limited Dynamic Length Strings: allow strings to have varying length up to a declared and
fixed maximum set by the variable’s definition, as exemplified by the strings in C

e Dynamic Length Strings: Allows strings various length with no maximum. This option
requires the overhead of dynamic storage allocation and deallocation but provides flexibility.
Ex: Perl and JavaScript

6.3.4 Evaluation

e Aid to writability
e Asa primitive type with static length, they are inexpensive to provide--why not have them?
e Dynamic length is nice, but is it worth the expense?

6.3.5 Implementation of Character String Types

e Static Length String - compile-time descriptor has three fields:
1. Name of the type
2. Type’s length
3. Address of first char

Static string

Length

Address

Figure 6.2 Compile-time descriptor for static strings

e Limited Dynamic Length Strings - may need a run-time descriptor for length to store both
the fixed maximum length and the current length (but not in C and C++ because the end of a
string is marked with the null character)

Limited dynamic string

Maximum length

Current length

Address

Figure 6.3 Run-time descriptor for limited dynamic strings

CMPS401 Class Notes (Chap06) Page 6/ 36 Dr. Kuo-pao Yang

e Dynamic Length Strings
— Need run-time descriptor because only current length needs to be stored
— Allocation/deallocation is the biggest implementation problem. Storage to which it is
bound must grow and shrink dynamically
— There are three approaches to supporting allocation and deallocation:
1. Strings can be stored in a linked list, so that when a string grows, the newly required
cells can come from anywhere in the heap
e The drawbacks to this method are the extra storage occupied by the links in the
list representation and necessary complexity of string operationsO
e String operations are slowed by the required pointer chasing
2. Store strings as arrays of pointer to individual character allocated in the heap
e This method still uses extra memory, but string processing can be faster that with
the linked-list approach
3. Store strings in adjacent storage cells
e “What about when a string grows?” Find a new area of memory and the old part
is moved to this area.
e Allocation and deallocation is slower but using adjacent cells results in faster
string operations and requires less storage. This approach is the one typically
used

CMPS401 Class Notes (Chap06) Page 7/ 36 Dr. Kuo-pao Yang

6.4 Enumeration Types 247

e All possible values, which are named constants, are provided, or enumerated, in the
definition

e Enumeration types provide a way of defining and grouping collections of named constants,
which are called enumeration constants

e C#example

enum days {mon, tue, wed, thu, fri, sat, sun};

— The enumeration constants are typically implicitly assigned the integer values, 0, 1, ...,
but can explicitly assigned any integer literal in the type’s definition

6.4.1 Design issues

e The designed issues for enumeration types are as follows:
— Is an enumeration constant allowed to appear in more than one type definition, and if so,
how is the type of an occurrence of that constant checked?
— Are enumeration values coerced to integer?
— Any other type coerced to an enumeration type?

6.4.2 Designs

e In languages that do not have enumeration types, programmers usually simulate them with
integer values

e For example, C did not have an enumeration type. We might use 0 to represent blue, 1 to
represent red, and so forth. These values could be defined as follows:

int red = 0, blue = 1;

e In C++, we could have the following:

enum colors {red, blue, green, yellow, black};
colors myColor = blue, yourColor = red;

— The colors type uses the default internal values for the enumeration constants, 0, 1, ...,
although the constants could have been assigned any integer literal.

e In 2004, an enumeration type was added to Java in Java 5.0. All enumeration types in Java
are implicitly subclasses of the predefined class Enum

e Interestingly, none of the relatively recent scripting languages include enumeration types.
— These included Perl, JavaScript, PHP, Python, Ruby, and Lua
— Even Java was a decade old before enumeration types ware added

CMPS401 Class Notes (Chap06) Page 8/ 36 Dr. Kuo-pao Yang

6.4.3 Evaluation

e Enumeration type can provide advantages in both readability and reliability.
e Aid readability
— e.g., no need to code a color as a number
e Aid to reliability, e.g., compiler can check:
— No arithmetic operations are legal on enumeration types
= e.g., don’t allow colors to be added
— No enumeration variable can be assigned a value outside its defined range
= e.g., If the colors enumeration type has 10 enumeration constants and uses 0..9 as its
internal values, no number greater than 9 can be assigned to a colors type variable.
— C# and Java 5.0 provide better support for enumeration than C++ because enumeration
type variables in these languages are not coerced into integer types

CMPS401 Class Notes (Chap06) Page 9/ 36 Dr. Kuo-pao Yang

6.5 Array Types 250

e An array is a homogeneous aggregate of data elements in which an individual element is
identified by its position in the aggregate, relative to the first element.

e The individual data elements of an array are of the same type.

e References to individual array elements are specified using subscription expressions.

e If any of the subscript expressions in a reference include variables, then the reference will
require an addition run-time calculation to determine the address of the memory location
being referenced.

6.5.1 Design Issues

e The primary design issues specific to arrays are the following:
— What types are legal for subscripts?
— Are subscripting expressions in element references range checked?
— When are subscript ranges bound?
— When does allocation take place?
— Are ragged or rectangular multidimensional arrays allowed, or both?
— Can arrays be initialized when they have their storage allocated?
— What kinds of slices are allowed, if any?

6.5.2 Arrays and Indices

e Indexing (or subscripting) is a mapping from indices to elements.
e The mapping can be shown as:

array name (index value list) — an element

e EX, Ada assignment statement:

Sum := Sum + B(I);

— Because () are used for both subprogram parameters and array subscripts in Ada, this
results in reduced readability.

e (C-based languages use [] to delimit array indices.

e Two distinct types are involved in an array type:

— The element type, and
— The type of the subscripts.

e The type of the subscript is often a sub-range of integers.

e Among contemporary languages, C, C++, Perl, and Fortran don’t specify range checking of
subscripts, but Java, ML, and C# do.

e In Perl, all arrays begin with at sign (@), because array elements are always scalars and the
names of scalars always being with dollar signs ($), references to array elements use dollar
signs rather that at signs in their names. For example, for the @list, the second element is
referenced with $list[1].

CMPS401 Class Notes (Chap06) Page 10/ 36 Dr. Kuo-pao Yang

6.5.3 Subscript Bindings and Array Categories

4.

The binding of subscript type to an array variable is usually static, but the subscript value
ranges are sometimes dynamically bound.

In C-based languages, the lower bound of all index ranges is fixed at O; Fortran 95, it
defaults to 1.

There are four categories of arrays, based on the binding to subscript ranges, the binding to
storage, and rom where the storage is allocated.
A static array is one in which the subscript ranges are statically bound and storage
allocation is static (done before run time).
— Advantages: efficiency “No allocation & deallocation.”
- Ex

Arrays declared in C & C++ function that includes the static modifier are static.

A fixed stack-dynamic array is one in which the subscript ranges are statically bound, but
the allocation is done at elaboration time during execution.
— Advantages: Space efficiency. A large array in one subprogram can use the same space as
a large array in different subprograms.
- Ex:
Arrays declared in C & C++ function without the static modifier are fixed stack-
dynamic arrays.

A fixed heap-dynamic array is similar to fixed stack-dynamic in which the subscript ranges
are dynamically bound, and the storage allocation is dynamic, but they are both fixed after
storage is allocated (i.e., binding is done when requested and storage is allocated from heap,
not stack)
— The bindings are done when the user program requests them during execution, rather than
at elaboration time and the storage is allocated on the heap, rather than the stack.
- Ex:
= (C & C++ also provide fixed heap-dynamic arrays. The function malloc and free are
used in C. The operations new and delete are used in C++.

= |n Java, all non-generic arrays are fixed heap dynamic arrays. Once created, they
keep the same subscript ranges and storage.

A heap-dynamic array is one in which the subscript ranges are dynamically bound, and the
storage allocation is dynamic, and can change any number of times during the array’s
lifetime.
— Advantages: Flexibility. Arrays can grow and shrink during program execution as the
need for space changes.
- Ex
= Objects of the C# rist class are generic heap-dynamic arrays. These array object
are created without any elements, as in

List<String> stringlList = new List<Stirng>();

CMPS401 Class Notes (Chap06) Page 11/ 36 Dr. Kuo-pao Yang

Elements are added to this object with the adada method, as in

stringList.Add (“Michael”) ;

= Java includes a generic class similar to C#’s List, named ArrayL.ist.
= Perl, JavaScript, Python, and Ruby support heap-dynamic arrays.

e A Perl array and JavaScript also support heap-dynamic array to grow with the
push (puts one or more new elements on the end of the array) and unshift (puts
one or more new elements on the beginning of the array)

e For example, in Perl we could create an array of five numbers with

@list = {1, 2, 4, 7, 10);
Later, the array could be lengthened with the push function, as in

push(@list, 13, 17);

Now the array’s value is (1, 2, 4, 7, 10, 13, 17).

6.5.4 Array Initialization

e Some language allow initialization at the time of storage allocation.

e Usually just a list of values that are put in the array in the order in which the array elements
are stored in memory.

e C, C++, Java, and C# allow initialization of their arrays. Consider the following C
declaration:

int list [] = {4, 5, 7, 83}

— The compiler sets the length of the array.
e Character Strings in C & C++ are implemented as arrays of char. These arrays can be
initialized to string constants, as in

char name [] = “Freddie”; //how many elements in array name?

— The array will have 8 elements because all strings are terminated with a null
character(zero), which is implicitly supplied by system for string constants.
e Arrays of strings in C and C++ can also be initialized with string literals. For example,

char *names [] = {"Bob", "Jake", "Darcie”"];

e In Java, similar syntax is used to define and initialize an array of references t0 string
objects. For example,

String [] names = [“Bob”, “Jake”, “Darcie”];

CMPS401 Class Notes (Chap06) Page 12 / 36 Dr. Kuo-pao Yang

6.5.5 Array Operations

e The most common array operations are assignment, catenation, comparison for equality and
inequality, and slices.

e The C-based languages do not provide any array operations, except thought methods of Java,
C++, and C#.

e Perl supports array assignments but does not support comparisons.

e Python’s arrays are called lists, although they have all the characteristics of dynamic arrays.
Because the objects can be of any types, these arrays are heterogeneous. Python’s array
assignments, but they are only reference changes. Python also supports array catenation and
element membership operations

e Ruby also provides array catenation

e APL provides the most powerful array processing operations for vectors and matrixes as well
as unary operators (for example, to reverse column elements)

6.5.6 Rectangular and Jagged Arrays

e A rectangular array is a multi-dimensioned array in which all of the rows have the same
number of elements and all columns have the same number of elements

e A jagged array is one in which the lengths of the rows need not be the same. A jagged matrix
has rows with varying number of elements.
— For example, a jagged matrix may consist of three rows, one with 5 elements, one with 7

elements, and one with 12 elements.

— Possible when multi-dimensioned arrays actually appear as arrays of arrays

e C, C++, and Java support jagged arrays but not rectangular arrays. In those languages, a
reference to an element of a multidimensioned array uses a separate pair of brackets for each
dimension. For examples,

myArray[3]1[7]1;

e C# and F# support rectangular arrays and jagged arrays. For rectangular arrays, all subscript
expressions in references to elements are placed in a single pair of brackets. For example,

myArray[3, 7]

CMPS401 Class Notes (Chap06) Page 13/ 36 Dr. Kuo-pao Yang

6.5.7 Slices

e Aslice of an array is some substructure of an array.

e Itis a mechanism for referencing part of an array as a unit.

e If arrays cannot be manipulated as units in a language, that has no use for slices. Slices are
only useful in languages that have array operations.

e Python
vector = [2, 4, 6, 8, 10, 12, 14, 16]
mat = [[ll 2/ 3}1 [41 5/ 6}/ [7/ 8/ 9}]

— wvector (3:6) Isathree-element array, whichis 8, 10, 12]
— mat[0][0:2] isthe first and second element of the first row of mat, which is (1, 2]
e Ruby supports slices with the s1ice method

list = [2, 4, 6, 8, 10]

— list.slice(2, 2) return returns the third and fourth elements of list: [6, 8]
— list.slice(1l..3) return (4, 6, 8]

6.5.8 Evaluation

e Arrays have been included in virtually all programming languages.

e The primary advances since their introduction in Fortran | have been slices and dynamic
arrays.

e The latest advances in arrays have been in associate arrays.

CMPS401 Class Notes (Chap06) Page 14 / 36 Dr. Kuo-pao Yang

6.5.9 Implementation of Arrays

e Access function maps subscript expressions to an address in the array
e Assingle-dimensioned array is implemented as a list of adjacent memory cells.
— The address to be accessed by a reference such as: list[k]
— Suppose the array list is defined to have a subscript range lower bound of 0. The access
function for list is often of the form

address(list[k]) = address (list[0]) + k * element_size
e Access function for single-dimensioned arrays:
address(list[k]) = address (list[lower_bound]) + ((k-lower_bound) * element_size)

e The compile-time descriptor for single-dimensioned arrays can have the form show in Figure
6.4.

Array

Element type

Index type

Index lower bound

Index upper bound

Address

Figure 6.4 Compile-time descrlptor for single-dimensioned arrays

e Accessing Multi-dimensioned Arrays.
e Two common ways:
— Row major order (by rows) — used in most languages
— Column major order (by columns) — used in Fortran
e For example, if the matrix had the values

o Ww
W N
oo o1

— it would be stored in row major order as:
3,4,7,6,2,5/1,3,8

— If the example matrix above were stored in column major, it would have the following
order in memory.

3,6,1,4,2,3,7,5,8

CMPS401 Class Notes (Chap06) Page 15/ 36 Dr. Kuo-pao Yang

— In all cases, sequential access to matrix elements will be faster if they are accessed in the
order in which they are stored, because that will minimize the paging. (Paging is the
movement of blocks of information between disk and main memory. The objective of
paging is to keep the frequently needed parts of the program in memory and the rest on
disk.)

e Locating an Element in a Multi-dimensioned Array (row major)

location (a[i,j]) = address of a [0,0] + ((i * n) +])) * element_size

e In Figure 6.5, we assume that subscript lower bounds are all zero.

0 j R A D G

m-1

Figure 6.5 The Iocatibn of the [i,j] element in a matrix

e The compile-time descriptor for a multidimensional array is show in Figure 6.6.

Multidimensioned array

Element type

Index type

Number of dimensions

Index range 0

Index range n — 1

Address

Figure 6.6 A compile-time descriptor for a multidimensional array

CMPS401 Class Notes (Chap06) Page 16 / 36 Dr. Kuo-pao Yang

6.6 Associative Arrays 261

e An associative array is an unordered collection of data elements that are indexed by an equal
number of values called keys.

e So each element of an associative array is in fact a pair of entities, a key and a value.

e Associative arrays are supported by the standard class libraries of Java, C++, C#, and F#.

e Example: In Perl, associative arrays are often called hashes. Names begin with %; literals are
delimited by parentheses. Hashes can be set to literal values with assignment statement, as in

%$salaries = (“Gary” => 75000, “Perry” => 57000,
“Mary” => 55750, “Cedric” => 47850);

— Subscripting is done using braces and keys. So an assignment of 58850 to the element of
$salaries With the key “perry” would appear as follows:

$salaries{“Perry”} = 58850;

— Elements can be removed with delete operator, as in the following:

delete $salaries{“Gary”};

— Elements can be emptied by assigning the empty literal, as in the following:

@salaries = ();

e Python’s associative arrays, which are called dictionaries, are similar to those of Perl, except
the values are all reference to objects.

e PHP’s arrays are both normal arrays and associative array.

e A Luatable is an associate array in which both the keys and the values can by any type.

e C#and F# support associative arrays through a .NET class.

CMPS401 Class Notes (Chap06) Page 17 / 36 Dr. Kuo-pao Yang

6.7 Record Types 263

e A record is a possibly heterogeneous aggregate of data elements in which the individual
elements are identified by names.

e In C, C++, and C#, records are supported with the struct data type. In C++, structures are a
minor variation on classes.

6.7.1 Definitions of Records

e The fundamental difference between a record and an array is that record elements, or fields,
are not referenced by indices. Instead, the fields are named with identifier, and references to
the fields are made using these identifiers.

e The COBOL form of a record declaration, which is part of the data division of a COBOL
program, is illustrated in the following example:

01 EMPLOYEE-RECORD.
02 EMPLOYEE-NAME.

05 FIRST PICTURE X (20).
05 Middle PICTURE X (10).
05 LAST PICTURE X (20).

02 HOURLY-RATE PICTURE 99V99.

— COBOL uses level numbers to show nested records; others use recursive definition

— The numbers o1, 02, and 05 that begin the lines of the record declaration are level
numbers, which indicate by their relative values the hierarchical structure of the record.

— The p1cTure clauses show the formats of the field storage locations, with x(20)
specifying 20 alphanumeric characters and 99v99 specifying four decimal digits with
decimal point in the middle.

6.7.2 References to Records

e References to the individual fields of records are syntactically specified by seral different
methods, two of which name the desired field and its enclosing records. COBOL field
references have the form

field_name or record_name_1 or . . . or record_name_n

e For example, the miadie field in the COBOL record example above can be reference with

Middle OF EMPLOYEE-NAME OF EMPLOYEE-RECORD

e Most language use dot notation

Employee Record.Employee Name.Middle

e Fully qualified references must include all record names

CMPS401 Class Notes (Chap06) Page 18/ 36 Dr. Kuo-pao Yang

« Elliptical references allow leaving out record names as long as the reference is unambiguous,
for example in COBOL FIRST, FIRST OF EMPLOYEE-NAME, and FIRST OF EMPLOYEE-
RECORD are elliptical references to the employee’s first name

6.7.3 Evaluation

e Records and arrays are closely related structural forms.

e Arrays are used when all the data values have the same type and/or are processed in the same
way.

e Records are used when the collection data values is heterogeneous and the different fields
are not processed in the same way. Also, the fields of a record often need not be processed in
a particular order.

e Access to array elements is much slower than access to record fields, because subscripts are
dynamic (field names are static)

6.7.4 Implementation of Record Types

e The fields of records are stored in adjacent memory locations.

o Field accesses are all handled using these offsets. Offset address relative to the beginning of
the records is associated with each field

e The compile-time descriptors for a record has the general form show in Figure 6.7.

Record

Name

Field 1 Type

Offset

Name

Field n Type

Offset

Address

Figure 6.7 A compile-time descriptor for a record

CMPS401 Class Notes (Chap06) Page 19/ 36 Dr. Kuo-pao Yang

6.8 Tuple Types 266

e Atuple is a data type that is similar to a record, except that the elements are not named
e Python
— Closely related to its lists, but tuples are immutable
— Ifatuple needs to be changed, it can be converted to an array with the list function
— Create with a tuple literal

myTuple = (3, 5.8, 'apple')

— Note that the elements of a tuple need not be of the same type
— The elements of a tuple can be referenced with indexing in brackets, as in the following:

myTuple[1]
This references the first element of the tuple, because tuple indexing begins at 1

— Tuple can be catenated with the plus (+) operator
— They can be deleted with del statement

— Create with a tuple

val myTuple = (3, 5.8, 'apple');
— Access as follows:

#1 (myTuple) ;
This reference the first element

— A new tuple type can be defined in ML with a type declaration, such as the following

type intReal = int * real;

let tup = (3, 5, 7);;
let a, b, ¢ = tup;;

This assign 3t0 a, 5 tob,and 7 to ¢

e Type are used in Python, ML, and F# to allow functions to return multiple values

CMPS401 Class Notes (Chap06) Page 20/ 36 Dr. Kuo-pao Yang

6.9 List Types 268

o Lists were first supported in the first functional programming language.
e Lists in Common Lisp and Scheme are delimited by parentheses and the elements are not
separated by any punctuation (no commas). For example

(A B C D)
Nested lists have the same form, so we could have

(A (B C) D)
In this list, (8 ¢) is a list nested inside the outer list

e Data and code have the same form
— Asdata, (» B c) is literally what it is
-~ Ascode, (» B ¢) isthe function A applied to the parameters B and c
e The interpreter needs to know which a list is, so if it is data, we quote it with an apostrophe

‘(A B C) is data

e List operations in Scheme
CAR returns the first element of its list parameter

(CAR ‘(A B C)) returns A

CDR returns the remainder of its list parameter after the first element has been removed

(CDR ‘(A B C)) returns (B C)

CONS puts its first parameter into its second parameter, a list, to make a new list

(CONS ‘A ‘(B Q)) returns (A B C)
— LIST returns a new list of its parameters

(LIST ‘A ‘B ‘(C D)) returns (A B (C D))

e List operations in ML
— Lists are written in brackets and the elements are separated by commas, as in the
following list of integers:

— List elements must be of the same type, so the following list would be illegal:

[5, 7.3, 9] illegal

— The Scheme CONS function is implemented as a binary infix operator in ML,
represented as ::, For example,

3 :: [5, 7, 9] return new list [3, 5, 7, 9]

CMPS401 Class Notes (Chap06) Page 21/ 36 Dr. Kuo-pao Yang

— ML has functions that correspond to Scheme’s CAR and CDR functions are named hd
(head) and +1 (tail), respectively

hd [5, 7, 9] is 5
tl [5, 7, 9] is [7, 9]
e F# Lists

— Like those of ML, except elements are separated by semicolons and na and t1 are
methods of the nist class

List.hd [1; 3; 5; 7] return 1

e Python Lists
— The list data type also serves as Python’s arrays
— Unlike Scheme, Common Lisp, ML, and F#, Python’s lists are mutable
— Elements can be of any type
— Create a list with an assignment

myList = [3, 5.8, “grape”]
— List elements are referenced with subscripting, with indices beginning at zero
x = myList([1] Assign 5.8 to x
— List elements can be deleted with de1
del myList[1]
— List Comprehensions — A list comprehension is an idea derived from set notation.
[x * x for x in range(l2) if x % 3 == 0]
= The range(12) function creates (o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12]

= The conditional filter out all numbers in the array that are not evenly divisible by 3.
This list comprehension returns the following array: (o, 9, 36, 81]

e Haskell’s List Comprehensions

[n *n | n<- [1..10]]
= This define a list of the squares of the numbers from 1 to 10

e F#’s List Comprehensions

let myArray = [|for 1 in 1 .. 5 => [i * 1) |]
= This statement creates the array [(1; 4; 9; 16; 25] and names it myArray

e Both C# and Java supports lists through their generic heap-dynamic collection classes, List
and arrayList, respectively. These structures are actually lists.

CMPS401 Class Notes (Chap06) Page 22 / 36 Dr. Kuo-pao Yang

6.10 Union Types 270

e Aunion is a type whose variables are allowed to store different type values at different times
during execution.

6.10.1 Design Issues
e The major design issue: Should type checking be required?
6.10.2 Discriminated vs. Free Unions

e C, and C++ provide union constructs in which there is no language support for type
checking; the union in these languages is called free union.

union flexType ({
int intEl;
float floatEl;

}i

union flexType ell;

float x;

ell.intEl = 27;
x = ell.floatEl; // assign 27 to float variable x

— This last assignment is not type checked, because the system cannot determine the
current type of the current value of ell, so it assigns the bit string representation of 27 to
float variable x, which of is nonsense.

e Type checking of unions requires that each union include a type indicator called a
discriminated union. The firs language to provide discriminated union was ALGOL 68.
They are supported by ML, Haskell, and F#.

6.10.3 Unions in F#

e Aunion is declared in F# with a type statement using OR operators (|)

type intReal =
| IntValue of int
| RealValue of float;;

— intReal ISthe new type
— IntvValue and Realvalue are constructors

e Values of type intRrReal can be created using the constructors as if they were a function, as in
the following examples:

let irl = IntValue 17;;
let ir2 = RealValue 3.4;;

CMPS401 Class Notes (Chap06) Page 23/ 36 Dr. Kuo-pao Yang

e Accessing the value of a union is done with pattern-matching structure

match pattern with
| expression list; -> expression;

| expression list, -> expression,

— Pattern can be any data type
— The expression list can have wild cards (_) or be solely a wild card character.

e Example:

let a = 7;;

let b "grape";;

let x match (a, b) with
| 4, "apple" -> apple
| , "grape" -> grape
| => fruit;;

e Todisplay the type of the intRrReal union:

let printType value =
match value with

| IntVale value -> printfn "It is an integer”

| RealValue value -> printfn "It is a float”;;

- Ifir1 and ir2 are defined as previously,
printType irl;; output: It is an integer
printType ir2;; output: It is a float

6.10.4 Evaluation

e Potentially unsafe construct
— They are one of the reasons why C and C++ are not strongly typed

e Java and C# do not support unions
— Reflective of growing concerns for safety in programming language

6.10.5 Implementation of Union Types

e Unions are by implemented by simply using the same address for every possible variant.
Sufficient storage for the largest variant is allocated.

CMPS401 Class Notes (Chap06) Page 24 / 36 Dr. Kuo-pao Yang

6.11 Pointer and Reference Types 273

e A pointer type in which the variables have a range of values that consists of memory
addresses and a special value, nil.

e The value nil is not a valid address and is used to indicate that a pointer cannot currently be
used to reference any memory cell.

e Pointers are designed for two distinct kinds of uses:
— Provide the power of indirect addressing
— Provide a way to manage dynamic memory. A pointer can be used to access a location in

the area where storage is dynamically created (usually called a heap)

6.11.1 Design Issues

e The primary design issues particular to pointers are the following:
— What are the scope of and lifetime of a pointer variable?
— What is the lifetime of a heap-dynamic variable?
— Are pointers restricted as to the type of value to which they can point?
— Are pointers used for dynamic storage management, indirect addressing, or both?
— Should the language support pointer types, reference types, or both?

6.11.2 Pointer Operations

e A pointer type usually includes two fundamental pointer operations, assignment and
dereferencing.
e Assignment sets a pointer var’s value to some useful address.
e Dereferencing takes a reference through one level of indirection.
— In C++, dereferencing is explicitly specified with the (*) as a prefix unary operation.
— If ptr is a pointer var with the value 7080, and the cell whose address is 7080 has the
value 206, then the assignment

j = *ptr; // Sets 3 to 206. This process is show in Figure 6.8.
7080
An anonymous
200 dynamic variable

ptr l 7080

E 1

Figure 6.8 The assignmehf operation j = *ptr

CMPS401 Class Notes (Chap06) Page 25/ 36 Dr. Kuo-pao Yang

In C and C++, there are two ways a pointer to a record can be used to reference a field in that
record.

— If a pointer variable o points to a record with a field name age, (*p) .age can be used to
refer to that field.

— The operator ->, when use between a pointer to a struct and a field of that struct,
combines dereferencing and field reference.

— For example, the expression

p -> age iSequivalentto (*p) .age

e Languages that provide pointers for the management of a heap must include an explicit
allocation operation.
— Allocation is sometimes specified with a subprogram, such as mai1oc in C.
— In a language that support object-oriented programming, allocation of heap objects is
often specified with new operation. C++, which does not provide implicit deallocation,
used delete as its deallocation operator.

6.11.3 Pointer Problems

e Dangling Pointers (dangerous)
— A pointer points to a heap-dynamic variable that has been deallocated.
— Dangling pointers are dangerous for the following reasons:

1.

The location being pointed to may have been allocated to some new heap-dynamic
variable. If the new variable is not the same type as the old one, type checks of uses
of the dangling pointer are invalid.

Even if the new one is the same type, its new value will bear no relationship to the old
pointer’s dereferenced value.

If the dangling pointer is used to change the heap-dynamic variable, the value of the
heap-dynamic variable will be destroyed.

It is possible that the location now is being temporarily used by the storage
management system, possibly as a pointer in a chain of available blocks of storage,
thereby allowing a change to the location to cause the storage manager to fail.

— The following sequence of operations creates a dangling pointer in many languages:

1.

2.
3.

A new heap-dynamic variable is created and pointer p1 is set to point at a new heap-
dynamic variable.

Pointer p2 is assigned p1‘s value.

The heap-dynamic variable pointed to by p1 is explicitly deallocated (possibly setting
pl to ni1), but p2 is not changed by the operation. p2 is now a dangling pointer. If
the deallocation operation did not change p1, both p1 and p2 would dangling. (Of
course, this is a problem of aliasing — p1 and p2 are aliases.)

CMPS401 Class Notes (Chap06) Page 26 / 36 Dr. Kuo-pao Yang

— For example, in C++ we could have the following:

int * arrayPtrl;

int * arrayPtr2 = new int[100];
arrayPtrl = arrayPtr2;
delete [] arrayPtr2;

// Now, arrayPtrl is dangling, because the help storage
// to which it was pointing has been deallocated.

= |n C++, both arrayptril and arrayptr2 are now dangling pointers, because the
C++ delete operator has no effect on the value of its operand pointer.

e Lost Heap-Dynamic Variables (wasteful)

— A heap-dynamic variable that is no longer referenced by any program pointer “no longer
accessible by the user program.”

— Such variables are often called garbage because they are not useful for their original
purpose, and also they cannot be reallocated for some new use in the program.

— Lost heap-dynamic variables are often created by the following sequence of operations:

1. Pointer p1 is set to point to a newly created heap-dynamic variable.

2. p1 is later set to point to another newly created heap-dynamic variable.
— The first heap-dynamic variable is now inaccessible, or lost.
— The process of losing heap-dynamic variables is called memory leakage.

CMPS401 Class Notes (Chap06) Page 27 / 36 Dr. Kuo-pao Yang

6.11.4 Pointers in C and C++

e Extremely flexible but must be used with care.

e Pointers can point at any variable regardless of when it was allocated

e Used for dynamic storage management and addressing

e Pointer arithmetic is possible in C and C++ makes their pointers more interesting than those
of the other programming languages.

e C and C++ pointers can point at any variable, regales of where it is allocated. In fact, they
can point anywhere in memory, whether there is a variable there or not, which is one of the
dangers of such pointers.

e Explicit dereferencing and address-of operators

e In C and C++, the asterisk (*) denotes the dereferencing operation, and the ampersand (&)
denotes the operator for producing the address of a variable. For example, in the code

int *ptr;
int count, init;

ptr = &init; // variable ptr sets to the address of init
count = *ptr; // dereference ptr to produce the value at init,
// thenassignto count
— the two assignment statement are equivalent to the single assignment

count = init;

e Example: Pointer Arithmetic in C and C++

int 1ist[10];
int *ptr;

Now consider the assignment
ptr = list;

— This assigns the address of 1ist[0] to ptr. Given this assignment, the following are
true:
= s (ptr + 1) iSequivalentto 1ist[1]
" x(ptr + index) ISequivalentto 1ist[index]
" ptrlindex] iSequivalentto 1ist[index]
e eX.*(ptr+5) isequivalentto 1ist[5] and ptr([5]

e C and C++ include pointers of type void *, which can point at values of any type. In effect
they are generic pointers.
— Type checking is not a problem with voida * pointers, because these languages disallow
dereferencing them.
— One common use of voida * pointers is as the types of parameters of functions that
operate on memory.

CMPS401 Class Notes (Chap06) Page 28 / 36 Dr. Kuo-pao Yang

6.11.5 Reference Types

A reference type variable is similar to a pointer, with one important and fundamental
difference: A pointer refers to an address in memory, while a reference refers to an object or
a value in memory.

e C++ includes a special kind of pointer type called a reference type that is used primarily for
formal parameters in function definition.

e A C++ reference type variable is a constant pointer that is always implicitly dereferenced.

e Because a C++ reference type variable is a constant, it must be initialized with the address of
some variable in its definition, and after initialization a reference type variable can never be
set to reference any other variable.

e Reference type variables are specified in definitions by preceding their names with

ampersands (&). for example,

int result = 0;
int &ref result = result;

ref result = 100;
— In this code segment, result and ref_result are aliases.

e In their quest for increased safety over C++, the designers of Java removed C++ style pointer
altogether.

e In Java, reference variables are extended from their C++ form to one that allow them to
replace pointers entirely.

e The fundamental difference between C++ pointers and Java references is that C++ pointers
refer to memory addresses, whereas Java reference variables refer to class instances.

e Because Java class instances are implicitly deallocated (there is no explicit deallocation
operator), there cannot be a dangling reference.

e C# includes both the references of Java and the pointers of C++. However, the use of
pointers is strongly discouraged. In fact, any method that uses pointers must include the
unsafe modifier.

e All variables in the object-oriented languages Smalltalk, Python, Ruby, and Lua are
references. They are always implicitly dereferenced.

CMPS401 Class Notes (Chap06) Page 29/ 36 Dr. Kuo-pao Yang

6.11.6 Evaluation

e Dangling pointers and garbage are problems as is heap management

e Pointers are like goto's
— The goto statement widens the range of statements that can be executed next
— Pointer variables widen the range of memory cells that can be referenced by a variable

e Pointers are essential in some kinds of programming applications.
— For example, pointers are necessary to write device drivers, in which specific absolute

addresses must be accessed

e The references of Java and C# provide some of the flexibility and the capabilities of pointers,
without the hazards.

e It remains to be seen whether the programmers will be willing to trade the full power of C
and C++ pointers for the greater safety of references.

CMPS401 Class Notes (Chap06) Page 30/ 36 Dr. Kuo-pao Yang

6.12 Optional Types 285

e Optional types are useful when there is a need for a variable to indicate that it currently has
no value
e C#, F#, and Swift, among others, have optional types
e C# has two categories of variables, value and reference types.
— Reference types in C# are already optional types (use null for no value)
— Value types in C# (struct types) can be declared to be optional by attaching a question
mark (?) to the type name in their declaration

int? x;
— The no-value is null, which can be assigned to x and x can be tested for it
int? x;
if(x == null)
Console.Writeline ("x has no value");

else
Console.WritelLine ("The value of x is: {0}", x);

e In Swift, nil is used instead of null
var Int? x;

if x ==nil

print ("x has no value")
else

print ("The value of x is: \(x)")

CMPS401 Class Notes (Chap06) Page 31/ 36 Dr. Kuo-pao Yang

6.13 Type Checking 286

e Type checking is the activity of ensuring that the operands of an operator are of compatible
types.
e A compatible type is one that is either legal for the operator, or is allowed under language
rules to be implicitly converted, by compiler-generated code, to a legal type.
e This automatic conversion is called a coercion.
— Ex:an int variable and a f10at variable are added in Java, the value of the int variable
is coerced to f1o0at and a floating-point is performed.
e Atype error is the application of an operator to an operand of an inappropriate type.
— Ex:in C, if an int value was passed to a function that expected a f10at Vvalue, a type
error would occur (compilers did not check the types of parameters)
e If all type bindings are static, nearly all type checking can be static.
e If type bindings are dynamic, type checking must be dynamic and done at run-time.
e Some languages, such as JavaScript and PHP, because of their type binding, allow only
dynamic type checking.
e |t is better to detect errors at compile time than at run time, because the earlier correction is
usually less costly.
— The penalty for static checking is reduced programmer flexibility.
e Type checking is complicated when a language allows a memory cell to store values of
different types at different time during execution.

CMPS401 Class Notes (Chap06) Page 32/ 36 Dr. Kuo-pao Yang

6.14 Strong Typing 287

e A programming language is strongly typed if type errors are always detected. This requires
that the types of all operands can be determined, either at compile time or run time.

e Advantage of strong typing: allows the detection of the misuses of variables that result in
type errors.

e C and C++ are not strongly typed language because both include union type, which are not
type checked.

e Java and C# are strongly typed. Types can be explicitly cast, which would result in type
error. However, there are no implicit ways type errors can go undetected.

e The coercion rules of a language have an important effect on the value of type checking.

e Coercion results in a loss of part of the reason of strong typing — error detection.
- Ex:

int a, b;
float d;

a + d; [/l the programmer meant a + b, but mistakenly type a + 4
/I The compiler would not detect this error. Variable a would be coerced to float

e S0, the value of strong typing is weakened by coercion
— Languages with a great deal of coercion, like C and C++ are less reliable than those with
no coercion, such as ML and F#.
— Java and C# have half as many assignment type coercions as C++, so their error
detection is better than that of C++, but still not nearly as effective as that of ML and F#.

CMPS401 Class Notes (Chap06) Page 33/ 36 Dr. Kuo-pao Yang

6.15 Type Equivalence 288

e Two types are equivalent if an operand of one type in an expression is substituted for one of
the other type, without coercion.

e There are two approaches to defining type equivalence: name type equivalence and structure
type equivalence.

e Name type equivalence means the two variables have equivalent types if they are in either
the same declaration or in declarations that use the same type name
— Easy to implement but highly restrictive:
— Subranges of integer types are not equivalent with integer types
— Formal parameters must be the same type as their corresponding actual parameters
- Ex, Ada

type Indextype is 1..100;
count : Integer;
index : Intextype

= The type of the variables count and index would not be equivalent; ; count could
not be assigned to index Or vice versa.

e Structure type equivalence means that two variables have equivalent types if their types
have identical structures
— More flexible, but harder to implement

type Vector is array (Integer range <>) of Integer;
Vector 1: Vector (1..10);
Vector 2: Vector (11..20);

= The types of these two objects are equivalent, even though they have different names
and different subscript rang, because of unconstrained array types.

e C uses both name and structure type equivalence.

— Name type equivalence is used for structure, enumeration, and union types.

— Other nonscalar types use structure type equivalence. Array type are equivalence if they
the same type components. Also, if an array type has a constant size, it is equivalent
either to other arrays with the same constant size or to with those without a constant size.

¢ In languages that do not allow users to define and name types, such as Fortran and COBOL,
names equivalence obviously cannot be used.

CMPS401 Class Notes (Chap06) Page 34/ 36 Dr. Kuo-pao Yang

6.16 Theory and Data Types 292

e Type theory is a broad area of study in mathematics, logic, computer science, and philosophy
e Two branches of type theory in computer science:
— Practical — The practical branch concerned with data types in commercial programming
languages
— Abstract — The abstract branch primarily focuses on typed lambda calculus, an area of
extensive research by theoretical computer scientist over the past half century
e A data type defines a set of values and a collection of operations on those values
e A type system is a set of types and the rules that govern their use in programs

CMPS401 Class Notes (Chap06) Page 35/ 36 Dr. Kuo-pao Yang

Summary 294

e A data type defines a collection of data values and a set of predefined operations on those
values

e The primitive data types of most imperative languages include numeric, character, and
Boolean types

e The user-defined enumeration and subrange types are convenient and add to the readability
and reliability of programs

e An array is a homogeneous aggregate of data elements in which an individual element is
identified by its position in the aggregate, relative to the first element

e An associative array is an unordered collection of data elements that are indexed by an
equal number of values called keys.
— Each element of an associative array is in fact a pair of entities, a key and a value

e A record is a possibly heterogeneous aggregate of data elements in which the individual
elements are identified by names

e There are four categories of arrays, based on the binding to subscript ranges, the binding to
storage, and rom where the storage is allocated.
— Static array: as in C++ array whose definition includes the static specifier
— Fixed stack-dynamic array: as in C function (without the static specifier)
— Fixed heap-dynamic array: as with Java’s objects
— Heap dynamic array: as in Java’s ArrayList and C#'s List

e Tuples are similar to records, but do not have names for their constituent parts. They are part
of Python, ML, and F#. Python’s tuples are closed to lists, but immutable

e Lists are staples of the functional programming languages, but are now also included in
Python and C#. Python’s lists are mutable

e Unions are locations that can store different type values at different times

e A pointer type in which the variables have a range of values that consists of memory
addresses and a special value, nil.
— Pointers are used for addressing flexibility and to control dynamic storage management
— Pointers have some inherent dangers: dangling pointers are difficult to avoid, and

memory leakage can occur

e Reference types, such as those in Java and C#, provide heap management without the
danger of pointers

e Strong typing is the concept of requiring that all type errors be detected

e The type equivalence rules of a language determine what operations are legal among the
structured types of a language

CMPS401 Class Notes (Chap06) Page 36 / 36 Dr. Kuo-pao Yang

