

CMPS401 Class Notes (Chap01) Page 1 / 22 Dr. Kuo-pao Yang

Chapter 1

Preliminaries

1.1 Reasons for Studying Concepts of Programming Languages 2

1.2 Programming Domains 5

1.3 Language Evaluation Criteria 7

1.4 Influences on Language Design 17

1.5 Language Categories 20

1.6 Language Design Trade-Offs 21

1.7 Implementation Methods 22

1.8 Programming Environments 29

Summary • Review Questions • Problem Set 30

CMPS401 Class Notes (Chap01) Page 2 / 22 Dr. Kuo-pao Yang

Chapter 1

Preliminaries

1.1 Reasons for Studying Concepts of Programming Languages 2

• Increased ability to express ideas

– It is believed that the depth at which we think is influenced by the expressive power of

the language in which we communicate our thoughts. It is difficult for people to

conceptualize structures they can’t describe, verbally or in writing.

– Language in which they develop software places limits on the kinds of control structures,

data structures, and abstractions they can use.

– Awareness of a wider variety of programming language features can reduce such

limitations in software development.

– Can language constructs be simulated in other languages that do not support those

constructs directly? Associative arrays in Perl vs. C

• Improved background for choosing appropriate languages

– Many programmers, when given a choice of languages for a new project, continue to use

the language with which they are most familiar, even if it is poorly suited to new projects.

– If these programmers were familiar with other languages available, they would be in a

better position to make informed language choices.

• Increased ability to learn new languages

– Programming languages are still in a state of continuous evolution, which means

continuous learning is essential.

– Programmers who understand the concept of object oriented programming will have

easier time learning Java and Ruby.

– Once a thorough understanding of the fundamental concepts of languages is acquired, it

becomes easier to see how concepts are incorporated into the design of the language

being learned.

– The TIOBE Programming Community issues an index (https://www.tiobe.com/tiobe-

index) that is an indicator of the relative popularity of programming languages. For

example, according to the index, Java, C, C++, and C# were the four most popular

languages in use in February 2017.

• Better understanding of significance of implementation

– Understanding of implementation issues leads to an understanding of why languages are

designed the way they are.

– This in turn leads to the ability to use a language more intelligently, as it was designed to

be used.

https://www.tiobe.com/tiobe-index
https://www.tiobe.com/tiobe-index

CMPS401 Class Notes (Chap01) Page 3 / 22 Dr. Kuo-pao Yang

– For example, programmers who know little about how recursion is implemented often do

not know that a recursive algorithm can be far slower than an equivalent iterative

algorithm.

• Better use of languages that are already known

– The more languages you gain knowledge of, the better understanding of programming

languages concepts you understand.

– Programmers can learn about previously unknown and unused parts of the languages they

already use and begin to use those features.

• Overall advancement of computing

– In some cases, a language became widely used, at least in part, because those in positions

to choose languages were not sufficiently familiar with programming language concepts.

– Many believe that ALGOL 60 was a better language than Fortran; however, Fortran was

most widely used. It is attributed to the fact that the programmers and managers didn’t

understand the conceptual design of ALGOL 60.

CMPS401 Class Notes (Chap01) Page 4 / 22 Dr. Kuo-pao Yang

1.2 Programming Domains 5

• Scientific applications

– In the early 40s computers were invented for scientific applications.

– The applications require large number of floating point computations.

– Fortran was the first language developed scientific applications.

– ALGOL 60 was intended for the same use.

• Business applications

– The first successful language for business was COBOL.

– Business languages are characterized by facilities for producing elaborate reports,

precise ways of describing and storing decimal numbers and character data, and the

ability to specify decimal arithmetic operations.

– The arrival of PCs started new ways for businesses to use computers.

– Spreadsheets and database systems were developed for business.

• Artificial intelligence

– Symbolic rather than numeric computations are manipulated.

– Symbolic computation is more suitably done with linked lists than arrays.

– LISP was the first widely used AI programming language.

– An alternative approach to AI applications: Prolog

– Scheme, a dialect of LISP

• Systems programming

– The OS and all of the programming supports tools are collectively known as its system

software.

– Need efficiency because of continuous use.

– A language for this domain must provide fast execution. Furthermore, it must have low-

level features that allow the software interfaces to external devices to be written.

– The UNIX operating system is written almost entirely in C.

• Web software

– The World Wide Web is supported by an eclectic collection of languages: markup

languages (e.g. HTML), scripting (e.g. PHP), general-purpose (e.g. Java)

– JavaScript is used mostly as a client-side scripting language. JavaScript is embedded in

HTML documents and is interpreted by a browser that finds the code in a document that

is being displayed.

– PHP is a scripting language used on Web server systems. Its code is embedded in

HTML documents. The code is interpreted on the server before the document is sent to

a requesting browser.

CMPS401 Class Notes (Chap01) Page 5 / 22 Dr. Kuo-pao Yang

1.3 Language Evaluation Criteria 6

• Readability: the ease with which programs can be read and understood

• Writability: the ease with which a language can be used to create programs

• Reliability: conformance to specifications (i.e., performs to its specifications)

• Cost: the ultimate total cost

1.3.1 Readability

• The most important criteria for judging a programming language is the ease with which

programs can be read and understood.

• Language constructs were designed more from the point of view of the computer than the

users.

• Because ease of maintenance is determined in large part by the readability of programs,

readability became an important measure of the quality of programs and programming

languages. The result is a crossover from focus on machine orientation to focus on human

orientation.

• The most important criterion “ease of use”

• Overall simplicity “Strongly affects readability”

– Too many features make the language difficult to learn. Programmers tend to learn a

subset of the language and ignore its other features.

– Multiplicity of features is also a complicating characteristic “having more than one way

to accomplish a particular operation. For example, in Java, a user can increment a simple

integer variable in four different ways:

count = count + 1

count += 1

count ++

++count

– Although the last two statements have slightly different meaning from each other and

from the others, all four have the same meaning when used as stand-alone expressions.

– Operator overloading where a single operator symbol has more than one meaning.

– Although this is a useful feature, it can lead to reduced readability if users are allowed to

create their own overloading and do not do it sensibly.

– Most assembly language statements are models of simplicity.

– This very simplicity, however, makes assembly language programs less readable.

Because they lack more complex control statements.

CMPS401 Class Notes (Chap01) Page 6 / 22 Dr. Kuo-pao Yang

• Orthogonality

– Makes the language easy to learn and read.

– A relatively small set of primitive constructs can be combined in a relatively small

number of ways to build the control and data structures of the language.

– Every possible combination is legal and meaningful.

– The more orthogonal the design of a language, the fewer exceptions the language rules

require.

– Example: In C language, parameters are passed by value, unless they are arrays, in

which they are, in effect, passed by reference (because the appearance of an array name

without a subscript in a C program is interpreted to be the address of the array’s first

element).

– Example: Adding two 32-bit integer values that reside in either memory or registers and

replacing on of two values with the sum.

▪ The IBM mainframes have two instructions:

A Reg1, memory_cell

//Reg1 <- contents (Reg1) + contents(memory_cell)

AR Reg1, Reg2

 //Reg1 <- contents (Reg1) + contents(Reg2)

where Reg1 and Reg2 represent registers.

▪ The VAX addition instruction for 32-bit integer value is:

ADDL operand_1, operand_2

 //operand_2 <- contents(operand_1) + contents(operand_2)

In this case, either operand can be a register or a memory cell.

▪ The VAX instruction design is orthogonal in that a single instruction can use either

registers or memory cell as the operands. The IBM design is not orthogonal.

– Too much orthogonality can also cause problems.

– Example: the most orthogonal programming language is ALGOL 68. Every language

construct in ALGOL 68 has a type, and there are no restrictions on those types.

▪ For example, a conditional can appear as the left side of an assignment, along with

declarations and other assorted statements, as long as the result is an address.

▪ This form of orthogonality leads to unnecessary complexity.

CMPS401 Class Notes (Chap01) Page 7 / 22 Dr. Kuo-pao Yang

• Control Statements

– It became widely recognized that indiscriminate use of goto statements severely reduced

program readability.

– Example: Consider the following nested loops written in C

while (incr < 20)

 {

 while (sum <= 100

 {

 sum += incr;

 }

 incr++;

 }

if C didn’t have a loop construct, this would be written as follows:

loop1:

 if (incr >= 20) go to out;

loop2:

 if (sum > 100) go to next;

 sum += incr;

 go to loop2;

next:

 incr++;

 go to loop1:

out:

– Basic and Fortran in the early 1970s lacked the control statements that allow strong

restrictions on the use of gotos, so writing highly readable programs in those languages

was difficult.

– Since then, languages have included sufficient control structures. The control statement

design of a language is now a less important factor in readability than it was in the past.

• Data Types

– The presence of adequate facilities for defining data types and data structures in a

language is another significant aid to reliability.

– Example: suppose a numeric type is used for an indicator flag because there is no

Boolean type in the language. In such a language, we might have an assignment such as

timeout = 1

▪ Whose meaning is unclear, whereas in a language that includes Boolean types we

would have the following:

timeout = true

The meaning of this statement is perfectly clear

CMPS401 Class Notes (Chap01) Page 8 / 22 Dr. Kuo-pao Yang

• Syntax Considerations

– The syntax of the elements of a language has a significant effect on readability.

– The following are examples of syntactic design choices that affect readability:

▪ Identifier forms: Restricting identifiers to very short lengths detract from readability.

– Example: In Fortran 77, identifiers can have six characters at most.

– Example: ANSI BASIC (1978) an identifier could consist only of a single letter or

a single letter followed by a single digit.

▪ Special Words: Program appearance and thus program readability are strongly

influenced by the forms of a language’s special words (while, class, for).

– Example: C uses braces for pairing control structures. It is difficult to determine

which group is being ended.

– Example: Fortran 95 and Ada allows programmers to use special names as legal

variable names. Ada uses end if to terminate a selection construct, and end loop

to terminate a loop construct.

▪ Form and Meaning: Designing statements so that their appearance at least partially

indicates their purpose is an obvious aid to readability. Semantic should follow

directly from syntax, or form.

– Example: In C the use of static depends on the context of its appearance.

– If used as a variable inside a function, it means the variable is created at compile

time.

– If used on the definition of a variable that is outside all functions, it means the

variable is visible only in the file in which its definition appears. It is not exported

from that file.

CMPS401 Class Notes (Chap01) Page 9 / 22 Dr. Kuo-pao Yang

1.3.2 Writability

• It is a measure of how easily a language can be used to create programs for a chosen

problem domain.

• Most of the language characteristics that affect readability also affect writability.

• Simplicity and orthogonality

– A smaller number of primitive constructs and a consistent set of rules for combining them

(that is, orthogonality) is much better than simply having a large number of primitives.

– A programmer can design a solution to a complex problem after learning only a simple

set of primitive constructs.

• Support for abstraction

– Abstraction means the ability to define and then use complicated structures or operations

in ways that allow many of the details to be ignored.

• Expressivity

– It means that a language has relatively convenient, rather than cumbersome, ways of

specifying computations.

– Ex: ++count vs. count = count + 1 // ++count more convenient and shorter

CMPS401 Class Notes (Chap01) Page 10 / 22 Dr. Kuo-pao Yang

1.3.3 Reliability

• A program is said to be reliable if it performs to its specifications under all conditions.

• Type checking: It is simply testing for type errors in a given program, either by the compiler

or during program execution.

– Type checking is an important factor in language reliability.

– Run-time type checking is expensive; compile-time type checking is more desirable.

Furthermore, the earlier errors are detected, the less expensive it is to make the required

repairs.

– Java requires type checking of nearly all variables and expressions at compile time.

• Exception handling: the ability to intercept run-time errors, take corrective measures, and

then continue is a great aid to reliability.

• Aliasing: it is having two or more distinct referencing methods, or names, for the same

memory cell. In C, union members and pointers set to point to the same variable.

– It is now widely accepted that aliasing is a dangerous feature in a language.

– For example, two pointers set to point to the same variable, which is possible in most

languages. In such a program, the programmer must always remember that changing the

value pointed to by one of two changes the value referenced by the other.

• Readability and writability: Both readability and writability influence reliability.

CMPS401 Class Notes (Chap01) Page 11 / 22 Dr. Kuo-pao Yang

1.3.4 Cost

• The total cost of a programming language is a function of many of its characteristics

– Training programmers to use the language

– Writing programs in the language

– Compiling programs

– Executing programs

– Language implementation system

▪ One of the factors that explains the rapid acceptance of Java is the free

compiler/interpreter system

– Reliability

▪ poor reliability leads to high costs

– Maintaining programs

• Others

– Portability

▪ The ease with which programs can be moved from one implementation to another

– Generality

▪ The applicability to a wide range of applications

– Well-definedness

▪ The completeness and precision of the language’s official defining document

CMPS401 Class Notes (Chap01) Page 12 / 22 Dr. Kuo-pao Yang

1.4 Influences on Language Design 17

1.4.1 Computer architecture

• We use imperative languages, at least in part, because we use von Neumann machines

– Data and programs stored in same memory

– Memory is separate from CPU

– Instructions and data are piped from memory to CPU

– Results of operations in the CPU must be moved back to memory

– Basis for imperative languages

▪ Variables model memory cells

▪ Assignment statements model piping

▪ Iteration is efficient

Figure 1.1 The von Neumann computer architecture

• Fetch-execute-cycle (on a von Neumann architecture computer)

initialize the program counter

repeat forever

 fetch the instruction pointed by the counter

 increment the counter

 decode the instruction

 execute the instruction

end repeat

CMPS401 Class Notes (Chap01) Page 13 / 22 Dr. Kuo-pao Yang

1.4.2 Programming methodologies

• 1950s and early 1960s: Simple applications

– worry about machine efficiency

• Late 1960s: Process-oriented

– People efficiency became important; readability, better control structures

– Structured programming

– Top-down design and step-wise refinement

• Late 1970s: Process-oriented to data-oriented

– data abstraction

• Middle 1980s: Object-oriented programming

– Data abstraction + inheritance + polymorphism

CMPS401 Class Notes (Chap01) Page 14 / 22 Dr. Kuo-pao Yang

1.5 Language Categories 20

• Imperative

– Central features are variables, assignment statements, and iteration

– Include languages that support object-oriented programming

– Include scripting languages

– Include the visual languages

– Examples: C, Java, Perl, JavaScript, Visual BASIC .NET, C++

• Functional

– Main means of making computations is by applying functions to given parameters

– Examples: LISP, Scheme, ML, F#

• Logic

– Rule-based (rules are specified in no particular order)

– Example: Prolog

• Markup/programming hybrid

– Markup languages extended to support some programming

– Examples: JSTL, XSLT

CMPS401 Class Notes (Chap01) Page 15 / 22 Dr. Kuo-pao Yang

1.6 Language Design Trade-Offs 21

• Reliability vs. Cost of execution

– Example: Java demands all references to array elements be checked for proper indexing,

which leads to increased execution costs.

– C does not require index range checking

– C programs execute faster than semantically equivalent Java programs, although Java

programs are more reliable.

• Readability vs. Writability

– Example: APL provides many powerful operators (and a large number of new symbols),

allowing complex computations to be written in a compact program but at the cost of

poor readability

– Well-known author Daniel MaCracken once noted that it took him four hours to read and

understand a four-line APL program.

• Writability (flexibility) vs. Reliability

– Example: C pointers are powerful and very flexible but are unreliable

– Because of the potential reliability problems with pointers, they are not included in Java

CMPS401 Class Notes (Chap01) Page 16 / 22 Dr. Kuo-pao Yang

1.7 Implementation Methods 22

• The major methods of implementing programming languages are compilation, pure

interpretation, and hybrid implementation

– Compilation: Programs are translated into machine language

– Pure Interpretation: Programs are interpreted by another program known as an

interpreter

– Hybrid Implementation Systems: A compromise between compilers and pure

interpreters

• The operating system and language implementation are layered over machine interface of a

computer.

• These layers can be thought of as virtual computers, providing interfaces to the user at

higher levels

Figure 1.2 Layered interface of virtual computers, provided by a typical computer system

CMPS401 Class Notes (Chap01) Page 17 / 22 Dr. Kuo-pao Yang

1.7.1 Compilation

• Translate high-level program (source language) into machine code (machine language)

• Slow translation, fast execution

• C, COBOL, C++, and Ada are by compilers.

• Compilation process has several phases:

– Lexical analysis: converts characters in the source program into lexical units

▪ The lexical units of a program are identifiers, special words operators, and

punctuation symbols.

– Syntax analysis: transforms lexical units into parse trees

▪ These parse trees represent the syntactic structure of program

– Semantics analysis: generate intermediate code

▪ Intermediate languages sometimes look very much like assembly languages and in

fact sometimes are actual assembly language.

▪ Symbol table: the type and attribute information of each user-defined name in the

program

▪ Optimization: improve programs by making them smaller or faster or both

– Code generation: machine code is generated

Figure 1.3 The Compilation Process

CMPS401 Class Notes (Chap01) Page 18 / 22 Dr. Kuo-pao Yang

• Von Neumann Bottleneck

– The speed of the connection between a computer’s memory and its processor determines

the speed of a computer.

– Program instructions often can be executed a lot faster than they can be moved to the

processor for execution.

– This connection speed is called the von Neumann bottleneck; it is the primary limiting

factor in the speed of computers

CMPS401 Class Notes (Chap01) Page 19 / 22 Dr. Kuo-pao Yang

1.7.2 Pure Interpretation

• Programs are interpreted by another program called an interpreter, with no translation.

• Advantage: Easier implementation of many source-level debugging operations, because all

run-time error messages can refer to source-level units.

• Disadvantage: Slower execution (10 to 100 times slower than compiled programs)

• Bottleneck: Statement decoding, rather than the connection between the processor and

memory, is the bottleneck of a pure interpreter.

• Significant comeback with some Web scripting languages (e.g., JavaScript and PHP).

Figure 1.4 Pure Interpretation Process

CMPS401 Class Notes (Chap01) Page 20 / 22 Dr. Kuo-pao Yang

1.7.3 Hybrid Implementation Systems

• A compromise between compilers and pure interpreters

• A high-level language program is translated to an intermediate language that allows easy

interpretation

• Faster than pure interpretation

• Examples:

– Java were hybrid: the intermediate form, byte code, provides portability to any machine

that has a byte code interpreter and a run-time system (together, these are called Java

Virtual Machine)

Figure 1.5 Hybrid Implementation System

CMPS401 Class Notes (Chap01) Page 21 / 22 Dr. Kuo-pao Yang

1.8 Programming Environments 29

• The collection of tools used in software development

• UNIX

– An older operating system and tool collection

– Nowadays often used through a GUI (e.g., CDE, KDE, or GNOME) that runs on top of

UNIX

• Borland JBuilder

– An integrated development environment for Java

• Microsoft Visual Studio.NET

– A large, complex visual environment

– Used to program in C#, Visual Basic.NET, JScript (Microsoft’s version of JavaScript),

F# (a functional language), and C++

• NetBeans

– Primarily used for Java application but also supports JavaScript, Ruby, and PHP

CMPS401 Class Notes (Chap01) Page 22 / 22 Dr. Kuo-pao Yang

Summary

• The study of programming language is valuable for a number of important reasons:

– Increases our capacity to use different constructs in writing programs

– Enables us to choose languages for projects more intelligently

– Makes learning new languages easier

• Among the most important criteria for evaluating languages are:

– Readability

– Writability

– Reliability

– Overall cost

• The major methods of implementing program languages are

– Compilation

– Pure interpretation

– Hybrid implementation

