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Chapter 3 

Describing Syntax and Semantics 
 

 

3.1 Introduction 110 

 
• Syntax – the form of the expressions, statements, and program units 

• Semantics - the meaning of the expressions, statements, and program units. 

• Ex: the syntax of a Java while statement is  

 
 while (boolean_expr) statement 

 

– The semantics of this statement form is that when the current value of the Boolean 

expression is true, the embedded statement is executed. 

– The form of a statement should strongly suggest what the statement is meant to 

accomplish. 

 

 

3.2 The General Problem of Describing Syntax 111 

 
• A sentence or “statement” is a string of characters over some alphabet.  The syntax rules of 

a language specify which strings of characters from the language’s alphabet are in the 

language. 

• A language is a set of sentences. 

• A lexeme is the lowest level syntactic unit of a language.  It includes identifiers, literals, 

operators, and special word (e.g. *, sum, begin).  A program is strings of lexemes.  

▪ A token is a category of lexemes (e.g., identifier).  An identifier is a token that have lexemes, 

or instances, such as sum and total. 

• Ex: 

 
index = 2 * count + 17; 

 

Lexemes  Tokens 

index   identifier 

=     equal_sign 

2     int_literal 

*     mult_op 

count   identifier 

+     plus_op 

17    int_literal 

;     semicolon 
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Language Recognizers and Generators 

 

• In general, language can be formally defined in two distinct ways: by recognition and by 

generation. 

 

• Language Recognizers:  

– A recognition device reads input strings of the language and decides whether the input 

strings belong to the language. 

– It only determines whether given programs are in the language. 

– Example: syntax analyzer part of a compiler. The syntax analyzer, also known as 

parsers, determines whether the given programs are syntactically correct.  

 

• Language Generators: 

–  A device that generates sentences of a language 

– One can determine if the syntax of a particular sentence is correct by comparing it to the 

structure of the generator 
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3.3 Formal Methods of Describing Syntax 113 

 
• The formal language generation mechanisms are usually called grammars 

• Grammars are commonly used to describe the syntax of programming languages. 

 

3.3.1 Backus-Naur Form and Context-Free Grammars 

 

• It is a syntax description formalism that became the most widely used method for 

programming language syntax. 

 

3.3.1.1 Context-free Grammars 

• Developed by Noam Chomsky in the mid-1950s who described four classes of generative 

devices or grammars that define four classes of languages. 

• Context-free and regular grammars are useful for describing the syntax of programming 

languages. 

• Tokens of programming languages can be described by regular grammars. 

• Whole programming languages can be described by context-free grammars. 

 

3.3.1.2 Origins of Backus-Naur Form (1959) 

• Invented by John Backus to describe ALGOL 58 syntax. 

• BNF (Backus-Naur Form) is equivalent to context-free grammars used for describing syntax. 

 

3.3.1.3 Fundamentals 

• A metalanguage is a language used to describe another language. BNF is a metalanguage for 

programming language. 

• In BNF, abstractions are used to represent classes of syntactic structures--they act like 

syntactic variables (also called nonterminal symbols) 

 

<assign> →  <var> = <expression> 

 

• This is a rule; it describes the structure of an assignment statement 

• A rule has a left-hand side (LHS) “The abstraction being defined” and a right-hand side 

(RHS) “consists of some mixture of tokens, lexemes and references to other abstractions”, 

and consists of terminal and nonterminal symbols. 

• This particular rule specifies that the abstraction <assign> is defined as an instance of the 

abstraction <var>, followed by the lexeme =, followed by an instance of the abstraction 

<expression>. 

• Example: 

 
total = subtotal1 + subtotal2 

 

• A grammar is a finite nonempty set of rules and the abstractions are called nonterminal 

symbols, or simply nonterminals. 

• The lexemes and tokens of the rules are called terminal symbols or terminals. 
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• A BNF description, or grammar, is simply a collection of rules. 

• An abstraction (or nonterminal symbol) can have more than one RHS 

• For Example, a Java if statement can be described with the rule 

 
<if_stmt> →  if (<logic_expr>) <stmt>  

| if (<logic_expr>) <stmt> else <stmt> 

 

• Multiple definitions can be written as a single rule, with the different definitions separated by 

the symbol |, meaning logical OR. 

 

3.3.1.4 Describing Lists 

• Syntactic lists are described using recursion. 

 
<ident_list> → identifier 

                |  identifier, <ident_list> 

 

• A rule is recursive if its LHS appears in its RHS. 

 

3.3.1.5 Grammars and Derivations 

• The sentences of the language are generated through a sequence of applications of the rules, 

beginning with a special nonterminal of the grammar called the start symbol. 

• A derivation is a repeated application of rules, starting with the start symbol and ending with 

a sentence (all terminal symbols) 

• Example 3.1 A Grammar for a Small language: 

 
<program>  → begin <stmt_list> end 

<stmt_list> → <stmt> | <stmt> ; <stmt_list> 

<stmt>    → <var> = <expression> 

<var>    → A | B | C 

<expression> → <var> + <var> | <var> - <var> | <var> 

 

• An example derivation for a program  begin A = B + C; B = C end 

 
<program>  => begin <stmt_list> end 

     => begin <stmt>; <stmt_list> end 

     => begin <var> = <epression>; <stmt_list> end 

     => begin A = <epression>; <stmt_list> end 

     => begin A = <var> + <var>; <stmt_list> end 

     => begin A = B + <var>; <stmt_list> end 

     => begin A = B + C; <stmt_list> end 

     => begin A = B + C; <stmt> end 

     => begin A = B + C; <var> = <expression> end 

     => begin A = B + C; B = <expression> end 

     => begin A = B + C; B = <var> end 

     => begin A = B + C; B = C end 

 

• Every string of symbols in the derivation, including <program>, is a sentential form. 

• A sentence is a sentential form that has only terminal symbols. 
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• A leftmost derivation is one in which the leftmost nonterminal in each sentential form is the 

one that is expanded.  The derivation continues until the sentential form contains no 

nonterminals. 

• A derivation may be neither leftmost nor rightmost. 

• Example 3.2 A Grammar for a Small Assignment Statements: 

 
<assign>  → <id> = <expr> 

<id>    → A | B | C 

<expr>  → <id> + <expr>  

|  <id> * <expr>  

|  (<expr>)  

|  <id> 

 

• An example derivation for the assignment A = B * (A + C) 

 
<assign>  => <id> = <expr>  

     => A = <expr> 

     => A = <id> * <expr> 

     => A = B * <expr> 

     => A = B * (<expr>) 

     => A = B * (<id> + <expr>) 

     => A = B * (A + <expr>) 

     => A = B * (A + <id>) 

     => A = B * (A + C) 

 

3.3.1.6 Parse Trees 

• Hierarchical structures of the language are called parse trees. 

• A parse tree for the simple statement A = B * (A + C) 

 

 
Figure 3.1 A parse tree for the simple statement A = B * (A + C) 
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3.3.1.7 Ambiguity 

• A grammar is ambiguous if it generates a sentential form that has two or more distinct parse 

trees. 

• Example 3.3 An Ambiguous Grammar for Small Assignment Statements 

• Two distinct parse trees for the same sentence,  A = B + C * A 

 
<assign>  → <id> = <expr> 

<id>      → A | B | C 

<expr>    → <expr> + <expr> 

        | <expr> * <expr> 

        | (<expr>) 

          | <id> 

 

 

 
Figure 3.2   Two distinct parse trees for the same sentence, A = B + C * A 

 

 

3.3.1.8 Operator Precedence 

• The fact that an operator in an arithmetic expression is generated lower in the parse tree can 

be used to indicate that it has higher precedence over an operator produced higher up in the 

tree. 

• In the left parsed tree above, one can conclude that the * operator has precedence over the + 

operator.  How about the tree on the right hand side? 
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• Example 3.4 An unambiguous Grammar for Expressions 

 
<assign>  → <id> = <expr> 

<id>       →  A | B | C 

<expr>     → <expr> + <term> 

        | <term> 

<term>    → <term> * <factor> 

        | <factor> 

<factor>  → (<expr>) 

            | <id> 

 

• Leftmost derivation of the sentence A = B + C * A 
 

<assign>  => <id> = <expr>  

          => A = <expr>  

=> A = <expr> + <term>  

           => A = <term> + <term> 

           => A = <factor> + <term>  

           => A = <id> + <term>  

           => A = B + <term> 

           => A = B + <term> * <factor> 

           => A = B + <factor> * <factor> 

           => A = B + <id> * <factor> 

           => A = B + C * <factor> 

           => A = B + C * <id> 

           => A = B + C * A 

 

A parse tree for the simple statement, A = B + C * A 

 
Figure 3.3   The unique parse tree for A = B + C * A using an unambiguous grammar 
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• Rightmost derivation of the sentence A = B + C * A 
 

<assign>  => <id> = <expr>  

=> <id> = <expr> + <term>  

=> <id> = <expr> + <term> * <factor> 

=> <id> = <expr> + <term> * <id> 

=> <id> = <expr> + <term> * A 

=> <id> = <expr> + <factor> * A 

=> <id> = <expr> + <id> * A 

=> <id> = <expr> + C * A 

=> <id> = <term> + C * A 

=> <id> = <factor> + C * A 

=> <id> = <id> + C * A 

=> <id> = B + C * A 

=> A = B + C * A 

 

• Both of these derivations, however, are represented by the same parse tree. 

 

 



CMPS401 Class Notes (Chap03) Page 10 / 25 Dr. Kuo-pao Yang 

3.3.1.9 Associativity of Operators 

• Do parse trees for expressions with two or more adjacent occurrences of operators with equal 

precedence have those occurrences in proper hierarchical order? 

• An example of an assignment using the previous grammar is: A = B + C + A 

 

 
Figure 3.4   A parse tree for A = B + C + A illustrating the associativity of addition 

 

• Figure above shows the left + operator lower than the right + operator.  This is the correct 

order if + operator meant to be left associative, which is typical. 

• When a grammar rule has LHS also appearing at beginning of its RHS, the rule is said to be 

left recursive. The left recursion specifies left associativity. 

• In most languages that provide it, the exponentiation operator is right associative. To 

indicate right associativity, right recursion can be used. A grammar rule is right recursive if 

the LHS appears at the right end of the RHS. Rules such as 

 
<factor>   → <exp> ** <factor> 

        | <exp> 

<exp>     → (<exp>) 

        | id 
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3.3.2 Extended BNF 

 

• Because of minor inconveniences in BNF, it has been extended in several ways. EBNF 

extensions do not enhance the descriptive powers of BNF; they only increase its readability 

and writability. 

• Three extension are commonly included in various versions of EBNF 

– Optional parts are placed in brackets ([ ]) 

 
<if_stmt > → if (expression>) <statement> [else <statement>] 

 

▪ Without the use the brackets, the syntactic description of this statement would require 

the following two rules: 

 
<if_stmt > → if (expression>) <statement> 

| if (expression>) <statement> else <statement> 

 

– Put repetitions (0 or more) in braces ({ }) 

 
<ident_list> → <identifier> {, <identifier>} 

 

– Put multiple-choice options of RHSs in parentheses and separate them with vertical bars 

(|, OR operator)  

 
<term> → <term> (* | / | %) <factor> 

 

▪ In BNF, a description of this <term> would require the following three rules: 

 
<term> → <term> * <factor> 

| <term> / <factor> 

| <term> % <factor> 

 

• Example 3.5 BNF and EBNF Versions of an Expression Grammar 

BNF: 
 <expr>   → <expr> + <term> 

|  <expr> - <term> 

|  <term> 

<term>    → <term> * <factor> 

|  <term> / <factor> 

|  <factor> 

<factor>   → <exp> ** <factor> 

|  <exp> 

<exp>    → (<expr>) 

|  id 

EBNF: 
<expr>    → <term> {(+ | -) <term>} 

<term>    → <factor> {(* | /) <factor>} 

<factor>   → <exp> {** <exp>} 

<exp>    → (<expr>) 

|  id 
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3.4 Attribute Grammars 128 
 

• An attribute grammar is a device used to describe more of the structure of a programming 

language than can be described with a context-free grammar. 

3.4.1 Static Semantics 

 

• Context-free grammars (CFGs) cannot describe all of the syntax of programming languages. 

• In Java, for example, a floating-point value cannot be assigned to an integer type variable, 

although the opposite is legal. 

• The static semantics of a language is only indirectly related to the meaning of programs 

during execution; rather, it has to do with the legal forms of programs (syntax rather than 

semantics). 

• Many static semantic rules of a language state its type constraints. Static semantics is so 

named because the analysis required to these specifications can be done at compile time.  

• Attribute grammars was designed by Knuth (1968) to describe both the syntax and the 

static semantics of programs. 

3.4.2 Basic Concepts 

 

• Attribute grammars have additions to are context-free grammars to carry some semantic 

information on parse tree nodes. 

• Attribute grammars are context-free grammars to which have been added attributes, attribute 

computation functions, and predicate function.   

3.4.3 Attribute Grammars Defined 

 

• Associated with each grammar symbol X is a set of attributes A(X).  

– The set A(X) consists of two disjoint set S(X) and I(X), call synthesized and inherited 

attributes.  

– Synthesized attributes are used to pass semantic information up a parse tree, while 

inherited attributes pass semantic information down and across tree. 

• Let   X0 → X1 ... Xn be a rule 

– Functions of the form S(X0) = f(A(X1), . , A(Xn)) define synthesized attributes 

– Functions of the form I(Xj) = f(A(X0), ... , A(Xn)), for i <= j <= n, define inherited 

attributes 

– Initially, there are intrinsic attributes on the leaves 

3.4.4 Intrinsic Attributes 

 

• Intrinsic attributes are synthesized attributes of leaf nodes whose values are determined 

outside the parse tree. 

• For example, the type of an instance of a variable in a program could come form the symbol 

table, which is used to store variable names and their types.  
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3.4.5 Examples Attribute Grammars 

 

• Example 3.6 An Attribute Grammar for Simple Assignment Statements 

 

1. Syntax rule:   <assign>  →  <var> = <expr> 

Semantic rule: <expr>.expected_type    <var>.actual_type 

2. Syntax rule:   <expr>   →  <var>[2] + <var>[3] 

Semantic rule: <expr>.actual_type     

if (<var>[2].actual_type = int and (<var>[3].actual_type = int) 

then  int 

else  real 

end if 

Predicate:   <expr>.actual_type == <expr>.expected_type  

3. Syntax rule:   <expr>   →  <var> 

Semantic rule: <expr>.actual_type     <var>.actual_type 

Predicate:   <expr>.actual_type == <expr>.expected_type  

4. Syntax rule:   <var>   →  A | B | C 

Semantic rule: <var>.actual_type     look-up (<var>.string) 

 

The look-up function looks up a given variable name in the symbol table and returns the 

variable’s type 

 

• The syntax portion of our example attribute grammar is  

 
<assign>  →  <var> = <expr> 

<expr>   →  <var>[2] + <var>[3] 

|  <var> 

<var>   →  A | B | C 

 

• actual_type - A synthesized attribute associated with nonterminal <var> and <expr>.  

– It is used to store the actual type, int or real, or a variable or expression.  

– In the case of a variable, the actual type is intrinsic.  

– In the of an expression, it is determined from the actual types of child node or children 

nodes of the <expr> nonterminal. 

• expected_type - A inherited attribute associated with nonterminal <expr>.  

– It is used to store the type, either int or real, that is expected for the expression, as 

determined by the type of the variable on the left side of the assignment statement.  
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3.4.6 Computing Attribute Values 

 

• Now, consider the process of computing the attribute values of a parse tree, which is 

sometimes called decorating the parse tree. 

• The tree in Figure 3.7 show the flow of attribute values in the example of Figure 3.6. 

 

 
Figure 3.6   A parse tree for A = A + B 

 

• The following is an evaluation of the attributes, in an order in which it is possible to 

computer them: 

 

1. <var>.actual_type       look-up (A)    (Rule 4) 

2. <expr>.expected_type     <var>.actual_type  (Rule 1) 

3. <var>[2].actual_type      look-up (A)    (Rule 4) 

<var>[3].actual_type      look-up (B)    (Rule 4) 

4. <expr>.actual_type      either int or real   (Rule 2) 

5. <expr>.expected_type   ==  <expr>.actual_type is either TRUE or FALSE (Rule 2) 

 

 
Figure 3.7   The flow of attributes in the tree 
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• The tree in Figure 3.8 shows the final attribute values on the nodes. In this example, A is 

defined as a real and B is defined as an int. 

 

 
Figure 3.8   A fully attributed parse tree (A: real, B: int) 

 

3.4.7 Evaluation 

 

• Checking the static semantic rules of a language is an essential part of all compiler. 

– One of the main difficulties in using an attribute grammar to describe all of the syntax 

and static semantics of a real contemporary programming language is the size and 

complexity of the attribute grammar. 

– Furthermore, the attribute values on a large parse tree are costly to evaluate. 
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3.5 Describing the Meanings of Programs: Dynamic Semantics 134 

 
• Three methods of semantic description: 

– Operational semantics: It is a method of describing the meaning of language constructs 

in terms of their effects on an ideal machine. 

– Denotation semantics: Mathematical objects are used to represents the meanings of 

languages constructs. Language entities are converted to these mathematical objects with 

recursive functions. 

– Axiomatic semantics: It is based on formal logic and devised as a tool for proving the 

correctness of programs. 

 

3.5.1 Operational Semantics 

 

• The idea behind operational semantics is to describe the meaning of a statement or 

program, by specifying the effects of running it on a machine. The effects on the machine are 

viewed as the sequence of changes in its states, where the machine’s state is the collection 

of the collection of the values in its storage. 

• Most programmers have written a small test program to determine the meaning of some 

programming language construct. 

• The basic process of operational semantics is not unusual. In fact, the concept is frequently 

used in programming textbooks and programming in reference manuals. 

• For example, the semantics of the C for construct can described in terms of simpler 

statements, as in 

 

C Statement          Meaning 

for (expr1; expr2; expr3) {       expr1; 

 …            loop:  if expr2 == 0 goto out 

}               … 

               expr3; 

                  goto loop 

                out: … 

 

• Operational semantics depends on programming languages of lower level, not mathematics 

and logic. 
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3.5.2 Denotational Semantics 

 

• Denotational semantics is the most rigorous and most widely known formal method for 

describing the meaning of programs. 

• It is solidly based on recursive function theory. 

 

Two Simple Examples 

• Example 1:  

– We use a very simple language construct, character string representations of binary 

numbers, to introduce the denotational method. 

– The syntax of such binary numbers can be described by the following grammar rules:  

 
<bin_num>  → '0' 

|  '1' 

| <bin_num> '0' 

| <bin_num> '1' 

 

– A parse tree for the example binary number, 110, is show in Figure 3.9. 

 

 
Figure 3.9   A parse tree of the binary number 110 

  



CMPS401 Class Notes (Chap03) Page 18 / 25 Dr. Kuo-pao Yang 

– The semantic function, named Mbin, maps the syntactic objects, as described in the 

previous grammar rules, to the objects in N, the set of non-negative decimal numbers. 

The function Mbin is defined as follows: 

 
Mbin ('0') = 0 

Mbin ('1') = 1 

Mbin (<bin_num> '0') = 2 * Mbin (<bin_num>) 

Mbin (<bin_num> '1') = 2 * Mbin (<bin_num>) + 1 

 

– The meanings, or denoted objects (which in this case are decimal numbers), can be 

attached to the nodes of the parse tree, yielding the tree in Figure 3.10) 

 

 
Figure 3.10   A parse tree with denoted objects for 110 

 

• Example 2:  

– The syntactic domain is the set of character string representations of decimal numbers. 

The semantic domain is once again the set N. 

 

<dec_num>  → '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' 

                 | <dec_num> ('0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9') 

 

– The denotational mapping for these syntax rules are 

 

Mdec ('0') = 0, Mdec ('1') = 1, Mdec ('2') = 2, …,  Mdec ('9') = 9 

Mdec (<dec_num> '0') = 10 * Mdec (<dec_num>) 

Mdec (<dec_num> '1’) = 10 * Mdec (<dec_num>) + 1 

… 

Mdec (<dec_num> '9') = 10 * Mdec (<dec_num>) + 9 
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3.5.3 Axiomatic Semantics 

 

• Axiomatic Semantics is based on mathematical logic.  

• It is defined in conjunction with the development of a method to prove the correctness of 

programs. 

– Such correction proofs, when they can be constructed, show that a program performs the 

computation described by its specification. 

– In a proof, each statement of a program is both preceded and followed by a logical 

expression that specified constraints on program variables. 

• Approach: Define axioms or inference rules for each statement type in the language (to allow 

transformations of expressions to other expressions.) 

– The expressions are called assertions. 

 

3.5.3.1 Assertions 

• The logical expressions are called predicates, or assertions. 

• An assertion before a statement (a precondition) states the relationships and constraints 

among variables that are true at that point in execution. 

• An assertion following a statement is a postcondition. 

 

3.5.3.2 Weakest Preconditions 

• A weakest precondition is the least restrictive precondition that will guarantee the validity 

of the associated postcondition.  

• The usual notation for specify the axiomatic semantic of a given statement form is   

 
{P} statement {Q} 

 

where P is the precondition, Q is the postcondition, and S is the statement form 

 

– An example:  a = b + 1  {a > 1} 

 

One possible precondition:  {b > 10} 

Weakest precondition:     {b > 0} 

 

• If the weakest precondition can be computed from the given postcondition for each statement 

of a language, then correctness proofs can be constructed from programs in that language. 

• Program proof process: The postcondition for the whole program is the desired result.  

Work back through the program to the first statement. If the precondition on the first 

statement is the same as the program spec, the program is correct. 

• An Axiom is a logical statement that is assumed to be true. 
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• An Inference Rule is a method of inferring the truth of one assertion on the basis of the 

values of other assertions. 

 
S1, S2, …, Sn 

    S 

 

– The rule states that if S1, S2, …, and Sn are true, then the truth of S can be inferred. The 

top part of an inference rule is call its antecedent; the bottom part is called it consequent. 

 

3.5.3.3 Assignment Statements 

• Ex: 

 
a = b / 2 – 1 {a < 10} 

 

The weakest precondition is computed by substituting b / 2 -1 in the assertion {a < 10} 

as follows: 

 
b / 2 – 1 < 10 

b / 2  < 11 

b    < 22 

∴ the weakest precondition for the given assignment and the postcondition is {b < 22} 

 

• An assignment statement has a side effect if it changes some variable other than its left side. 

• Ex: 

 
x = 2 * y – 3 {x > 25} 

 

The weakest precondition is computed as follows: 

 
2 * y – 3 > 25 

2 * y   > 28 

y     > 14 

∴ the weakest precondition for the given assignment and the postcondition is {y > 14} 

 

• Ex: 

 
x = x + y – 3 {x > 10} 

 

The weakest precondition is computed as follows: 

 
x + y – 3  > 10 

y      > 13 – x 

∴ the weakest precondition for the given assignment and the postcondition is {y > 13 -x} 
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3.5.3.4 Sequences 

• The weakest precondition for a sequence of statements cannot be described by an axiom, 

because the precondition depends on the particular kinds of statements in the sequence. 

• In this case, the precondition can only be described with an inference rule. 

• Let S1 and S2 be adjacent program statements. If S1 and S2 have the following preconditions 

and postconditions. 

 
{P1} S1 {P2} 

{P2} S2 {P3} 

 

The inference rule for such a two-statement sequence is  

 
{P1} S1 {P2}, {P2} S2 {P3} 

    {P1} S1, S2 {P3} 

 

• Ex: 

 
y = 3 * x + 1; 

x = y + 3;  {x < 10} 

 

The weakest precondition is computed as follows: 

 
y + 3 < 10 

y    < 7 

 

3 * x + 1  < 7 

3 * x    < 6 

x      < 2 

∴ the weakest precondition for the first assignment statement is {x < 2} 
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3.5.3.5 Selection 

• We next consider the inference rule for selection statements, the general form of which is  

 
if B then S1 else S2 

 

We consider only selections that include else clause. The inference rule is  

 
{B and P} S1 {Q}, {not B and P} S2 {Q} 

    {P} if B then S1 else S2 {Q} 

 

• Example of selection statement is 

 
If (x > 0) then 

     y = y - 1; 

else  

y = y + 1;  

{y > 0} 

 

We can use the axiom for assignment on the then clause 

y = y - 1 {y > 0} 

This produce precondition {y – 1 > 0} or {y > 1} 

 

Now we apply the same axiom to the else clause 

y = y + 1 {y > 0}  

This produce precondition {y + 1 > 0} or {y > -1} 

 

y > 1 AND y > -1 

{y > 1} 

Because {y > 1} => {y > -1}, the rule of consequence allows us to use {y > 1} for the 

precondition of selection statement. 
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3.5.3.6 Logical Pretest Loops 

• Computing the weakest precondition (wp) for a while loop is inherently more difficult than 

for a sequence b/c the number of iterations cannot always be predetermined. 

• The corresponding step in the axiomatic semantics of a while loop is finding an assertion 

called a loop invariant, which is crucial to finding the weakest precondition. 

• The inference rule for computing the precondition for a while loop is as follows: 

 
___________{I and B} S {I}_______________ 

    {I} while B do S end {I and (not B)} 

 

In this rule, I is the loop invariant 

 

• The axiomatic description of a while loop written as  

 
{P} while B do S end {Q} 

 

• It is helpful to treat the process of producing the wp as a function, wp. 

 
wp(statement, postcondition) = precondition 

 

• To find I, we use the loop postcondition to compute preconditions for several different 

numbers of iterations of the loop body, starting with none.  If the loop body contains a single 

assignment statement, the axiom for assignment statements can be used to compute these 

cases. 

• Characteristics of the loop invariant: I must meet the following conditions: 

– P => I          -- the loop invariant must be true initially 

– {I} B {I}         -- evaluation of the Boolean must not change the validity of I 

– {I and B} S {I}      -- I is not changed by executing the body of the loop 

– (I and (not B)) => Q      -- if I is true and B is false, Q is implied 

– The loop terminates     -- can be difficult to prove 
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• Ex: 

 
while y <> x do y = y + 1 end {y = x} 

 

For 0 iterations, the wp is   →        {y = x} 

For 1 iteration, 

wp(y = y + 1, {y = x})   = {y + 1 = x}, or   {y = x – 1} 

For 2 iterations, 

wp(y = y + 1, {y = x - 1})  = {y + 1 = x - 1}, or  {y = x – 2} 

For 3 iterations, 

wp(y = y + 1, {y = x - 2})  = {y + 1 = x - 2}, or  {y = x – 3} 

 

• It is now obvious that {y < x} will suffice for cases of one or more iterations. Combining this 

with {y = x} for the 0 iterations case, we get {y <= x} which can be used for the loop 

invariant. 

 

• Ex: 

 
while s > 1 do s = s / 2 end {s = 1} 

 

For 0 iterations, the wp is  →      {s = 1} 

For 1 iteration, 

wp(s > 1, {s = s / 2}) = {s / 2 = 1}, or  {s = 2} 

For 2 iterations, 

wp(s > 1, {s = s / 2}) = {s / 2 = 2}, or  {s = 4} 

For 3 iterations, 

wp(s > 1, {s = s / 2}) = {s / 2 = 4}, or  {s = 8} 

 

• Loop Invariant I is {s is a nonnegative power of 2} 

• The loop invariant I is a weakened version of the loop postcondition, and it is also a 

precondition. 

• I must be weak enough to be satisfied prior to the beginning of the loop, but when combined 

with the loop exit condition, it must be strong enough to force the truth of the postcondition. 

 

 



CMPS401 Class Notes (Chap03) Page 25 / 25 Dr. Kuo-pao Yang 

Summary 

 
• BNF and context-free grammars are equivalent meta-languages 

– Well-suited for describing the syntax of programming languages 

• An attribute grammar is a descriptive formalism that can describe both the syntax and the 

semantics of a language 

• Three primary methods of semantics description 

– Operation, denotational, axiomatic 

 


