

CMPS401 Class Notes (Chap08) Page 1 / 17 Dr. Kuo-pao Yang

Chapter 8

Statement-Level Control Structures

8.1 Introduction 330

8.2 Selection Statements 332

8.3 Iterative Statements 343

8.4 Unconditional Branching 355

8.5 Guarded Commands 356

8.6 Conclusions 359

Summary • Review Questions • Problem Set • Programming Exercises 360

CMPS401 Class Notes (Chap08) Page 2 / 17 Dr. Kuo-pao Yang

Chapter 8

Statement-Level Control Structures

8.1 Introduction 330

• A control structure is a control statement and the statements whose execution it controls

– Selection Statements

– Iterative Statements

• There is only one design issue that is relevant to all of the selection and iteration control

statements:

– Should a control structure have multiple entries?

8.2 Selection Statements 332

• A selection statement provides the means of choosing between two or more paths of

execution.

• Selection statement fall into two general categories:

– Two-way selection

– Multiple-way selection

8.2.1 Two-Way Selection Statements

• The general form of a two-way selector is as follows:

if control_expression

 then clause

 else clause

• Design issues

– What is the form and type of the control expression?

– How are the then and else clauses specified?

– How should the meaning of nested selectors be specified?

• The control expression

– Control expressions are specified in parenthesis if the then reserved word is not used to

introduce the then clause, as in the C-based languages

– In C89, which did not have a Boolean data type, arithmetic expressions were used as

control expressions

– In contemporary languages, such as Java and C#, only Boolean expressions can be used

for control expressions

CMPS401 Class Notes (Chap08) Page 3 / 17 Dr. Kuo-pao Yang

• Clause Form

– In most contemporary languages, the then and else clauses either appear as single

statements or compound statements.

– C-based languages use braces to form compound statements.

– One exception is Perl, in which all then and else clauses must be compound statements,

even if they contain single statements

– In Python and Ruby, clauses are statement sequences

– Python uses indentation to define clauses

if x > y :

x = y

print " x was greater than y"

▪ All statements equally indented are included in the compound statement. Notice that

rather than then, a colon is used to introduce the then clause in the Python

CMPS401 Class Notes (Chap08) Page 4 / 17 Dr. Kuo-pao Yang

• Nesting Selectors

– In Java and contemporary languages, the static semantics of the language specify that the

else clause is always paired with the nearest unpaired then clause

if (sum == 0)

 if (count == 0)

 result = 0;

else

 result = 1;

▪ A rule, rather than a syntactic entity, is used to provide the disambiguation

▪ So, in the example, the else clause would be the alternative to the second then

clause

▪ To force the alternative semantics in Java, a different syntactic form is required, in

which the inner if is put in a compound, as in

if (sum == 0) {

 if (count == 0)

 result = 0;

}

else

result = 1;

– C, C++, and C# have the same problem as Java with selection statement nesting

– Ruby, statement sequences as clauses:

if sum == 0 then

 if count == 0 then

 result = 0

 else

 result = 1

 end

end

– Python, all statements uses indentation to define clauses

if sum == 0 :

 if count == 0 :

 result = 0

 else :

 result = 1

CMPS401 Class Notes (Chap08) Page 5 / 17 Dr. Kuo-pao Yang

8.2.2 Multiple Selection Constructs

• The multiple selection construct allows the selection of one of any number of statements or

statement groups.

• Design Issues

– What is the form and type of the control expression?

– How are the selectable segments specified?

– Is execution flow through the structure restricted to include just a single selectable

segment?

– How are case values specified?

– What is done about unrepresented expression values?

• C, C++, Java, and JavaScript switch

switch (expression) {

case constant_expression1 : statement1;

 ...

 case constant_expressionn : statementn;

 [default: statementn+1]

}

– The control expression and the constant expressions some discrete type including integer

types as well as character and enumeration types

– The selectable statements can be statement sequences, blocks, or compound statements

– Any number of segments can be executed in one execution of the construct (there is no

implicit branch at the end of selectable segments)

– default clause is for unrepresented values (if there is no default, the whole statement

does nothing)

– Any number of segments can be executed in one execution of the construct (a trade-off

between reliability and flexibility—convenience.)

– To avoid it, the programmer must supply a break statement for each segment.

• C# switch

– C# switch statement differs from C-based in that C# has static semantic rule disallows the

implicit execution of more than one segment

– The rule is that every selectable segment must end with an explicit unconditional branch

statement either a break, which transfers control out of the switch construct, or a goto,

which can transfer control to on of the selectable segments. C# switch statement example:

switch (value) {

case -1: Negatives++;

 break;

 case 0: Zeros++;

 goto case 1;

 case 1: Positives ++;

 default: Console.WriteLine(“Error in switch \n”);

}

CMPS401 Class Notes (Chap08) Page 6 / 17 Dr. Kuo-pao Yang

• Multiple Selection Using if

– Multiple Selectors can appear as direct extensions to two-way selectors, using else-if

clauses

– Ex, Python selector statement (note that else-if is spelled elif in Python):

if count < 10 :

 bag1 = True

elif count < 100 :

 bag2 = True

elif count < 1000 :

 bag3 = True

which is equivalent to the following:

if count < 10 :

 bag1 = True

else :

 if Count < 100 :

 bag2 = True

 else :

 if Count < 1000 :

 bag3 = True

▪ The elsif version is the more readable of the two.

– The Python example can be written as a Ruby case

 case

 when count < 10 then bag1 = true

 when count < 100 then bag2 = true

 when count < 1000 then bag3 = true

 end

– Notice that this example is not easily simulated with a switch-case statement, because

each selectable statement is chosen on the basis of a Boolean expression

– In fact, none of the multiple selectors in contemporary languages are as general as the if-

then-else-if statement

CMPS401 Class Notes (Chap08) Page 7 / 17 Dr. Kuo-pao Yang

8.3 Iterative Statements 343

• An iterative statement is one that cause a statement or collection of statements to be executed

zero, one, or more times

• The repeated execution of a statement or compound statement is accomplished either by

iteration or recursion

• An iterative statement is often called loop

• Iteration is the very essence of the power of computer

• The repeated execution of a statement is often accomplished in a functional language by

recursion rather than by iteration

• General design issues for iteration control statements:

– How is iteration controlled?

– Where should the control mechanism appear in the loop statement?

• The primary possibilities for iteration control are logical, counting, or a combination of the

two

• The main choices for the location of the control mechanism are the top of the loop or the

bottom of the loop

• The body of a loop is the collection of statements whose execution is controlled by the

iteration statement

• The term pretest means that the loop completion occurs before the loop body is executed

• The term posttest means that the loop completion occurs after the loop body is executed

▪ The iteration statement and the associated loop body together form an iteration statement

CMPS401 Class Notes (Chap08) Page 8 / 17 Dr. Kuo-pao Yang

8.3.1 Counter-Controlled Loops

• A counting iterative control statement has a variable, called the loop variable, in which the

count value is maintained

• It also includes means of specifying the intial and terminal values of the loop variable, and

the difference between sequential loop variable values, called the stepsize.

• The intial, terminal and stepsize are called the loop parameters.

• Design issues:

– What are the type and scope of the loop variable?

– Should it be legal for the loop variable or loop parameters to be changed in the loop body,

and if so, does the change affect loop control?

– Should the loop parameters be evaluated only once, or once for every iteration?

–

• Fortran 90’s DO syntax:

[name:] DO label variable = initial, terminal [, stepsize]

 . . .

END DO [name]

– The label is that of the last statement in the loop body, and the stepsize, when absent,

defaults to 1.

– Loop variable must be an INTEGER and may be either negative or positive.

– The loop parameters are allowed to be expressions and can have negative or positive

values.

– They are evaluated at the beginning of the execution of the DO statement, and the value

is used to compute an iteration count, which then has the number of times the loop is to

be executed.

– The loop is controlled by the iteration count, not the loop param, so even if the params

are changed in the loop, which is legal, those changes cannot affect loop control.

– The iteration count is an internal var that is inaccessible to the user code.

– The DO statement is a single-entry structure

CMPS401 Class Notes (Chap08) Page 9 / 17 Dr. Kuo-pao Yang

• The for statement of the C-based languages

for ([expr_1] ; [expr_2] ; [expr_3])

 loop body

– The loop body can be a single statement, a compound statement, or a null statement

for (count = 1; count <= 10; count++)

. . .

– All of the expressions of C’s for are optional

– If the second expression is absent, it is an infinite loop

– If the first and third expressions are absent, no assumptions are made

– The C-based languages for design choices are:

▪ There are no explicit loop variable or loop parameters

▪ All involved variables can be changed in the loop body

▪ First expression is evaluated once, but the other two are evaluated with each iteration

▪ It is legal to branch into the body of a for loop in C

– C’s for is more flexible than the counting loop statements of Fortran and Ada, because

each of the expressions can comprise multiple statements, which in turn allow multiple

loop variables that can be of any type

– Consider the following for statement:

for (count1 = 0, count2 = 1.0;

 count1 <= 10 && count2 <= 100.0;

 sum = ++count1 + count2, count2 *= 2.5)

;

The operational semantics description of this is:

count1 = 0

count2 = 1.0

loop:

 if count1 > 10 goto out

 if count2 > 100.0 goto out

 count1 = count1 + 1

 sum = count1 + count2

 count2 = count2 * 2.5

 goto loop

out:

. . .

▪ The loop above does not need and thus does not have a loop body

– The for statement of C99 and C++ differs from earlier version of C in two ways:

▪ It can use an arithmetic expression or a Boolean expression for loop control

▪ The first expression can include variable definitions (scope is from the definition to

the end of the loop body), for example

for (int count = 0; count <= 10; count++) { . . . }

– The for statement of Java and C# is like that of C++, except that the loop control

expression is restricted to Boolean

CMPS401 Class Notes (Chap08) Page 10 / 17 Dr. Kuo-pao Yang

• The for statement of Python

– The general form of Python’s for is:

for loop_variable in object:

 - loop body

[else:

 - else clause]

– The object is often range, which is either a list of values in brackets ([2, 4, 6]), or a

call to the range function (range(5), which returns 0, 1, 2, 3, 4)

– The loop variable takes on the values specified in the given range, one for each iteration

– The else clause, which is optional, is executed if the loop terminates normally

– Consider the following example:

for count in [2, 4, 6] :

 print count

produces

2

4

6

CMPS401 Class Notes (Chap08) Page 11 / 17 Dr. Kuo-pao Yang

8.3.2 Logically Controlled Loops

• Repetition control is based on a Boolean expression rather than a counter

• Design Issues:

– Should the control be pretest or posttest?

– Should the logically controlled loop be a special form of a counting loop or a separate

statement?

• The C-based programming languages include both pretest and posttest logically controlled

loops that are not special forms of their counter-controlled iterative statements

• The pretest and posttest logical loops have the following forms (while and do-while):

while (control_expression)

 loop body

and

do

 loop body

while (control_expression);

• These two statements forms are exemplified by the following C# code:

sum = 0;

indat = Int32.Parse(Console.ReadLine());

while (indat >= 0) {

 sum += indat;

 indat = Int32.Parse(Console.ReadLine());

}

value = Int32.Parse(Console.ReadLine());

do {

 value /= 10;

 digits ++;

} while (value > 0);

• The only real difference between the do and the while is that the do always causes the loop

body to be executed at least once

• Java’s while and do statements are similar to those of C and C++, except the control

expression must be Boolean type, and because Java does not have a goto, the loop bodies

cannot be entered anywhere but at their beginning

CMPS401 Class Notes (Chap08) Page 12 / 17 Dr. Kuo-pao Yang

8.3.3 User-Located Loop Control Mechanisms

• It is sometimes convenient for a programmer to choose a location for loop control other than

the top or bottom of the loop

▪ Design issues:

– Should the conditional mechanism be an integral part of the exit?

– Should only one control body be exited, or can enclosing loops also be exited?

• C and C++ have unconditional unlabeled exits (break)

• Java, Perl, and C# have unconditional labeled exits (break in Java and C#, last in Perl)

• The following is an example of nested loops in C#:

OuterLoop:

 for (row = 0; row < numRows; row++)

 for (col = 0; col < numCols; col++) {

 sum += mat[row][col];

 if (sum > 1000.0)

 break outerLoop;

 }

• C and C++ include an unlabeled control statement, continue, that transfers control to the

control mechanism of the smallest enclosing loop

• This is not an exit but rather a way to skip the rest of the loop statements on the current

iteration without terminating the loop structure. Ex:

while (sum < 1000) {

 getnext(value);

 if (value < 0) continue;

 sum += value;

}

• A negative value causes the assignment statement to be skipped, and control is transferred

instead to the conditional at the top of the loop

• On the other hand, in

while (sum < 1000) {

 getnext(value);

 if (value < 0) break;

 sum += value;

}

▪ A negative value terminates the loop

• Java, Perl, and C# have statements similar to continue, except they can include labels that

specify which loop is to be continued

• The motivation for user-located loop exits is simple: They fulfill a common need for goto

statements through a highly restricted branch statement

• The target of a goto can be many places in the program, both above and below the goto itself

• However, the targets of user-located loop exits must be below the exit and can only follow

immediately the end of a compound statement

CMPS401 Class Notes (Chap08) Page 13 / 17 Dr. Kuo-pao Yang

8.3.4 Iteration Based on Data Structures

• A general data-based iteration statement uses a user-defined data structure and a user-defined

function (the iterator) to go through the structure’s elements

• The iterator is called at the beginning of each iteration, and each time it is called, the iterator

return a n element from a particular data structure in some specific order

• C's for can be used to build a user-defined iterator:

for (ptr=root; ptr==NULL; ptr = traverse(ptr)) {

 . . .

}

• Java 5.0 uses for, although it is called foreach

– The following statement would iterate though all of its elements, setting each to

myElement:

for (String myElement : myList) { . . . }

– The new statement is referred to as “foreach,” although is reserved word is for

• C#’s foreach statement iterates on the elements of array and other collections

– C# and F# (and the other .NET languages) have generic library classes, like Java 5.0 (for

arrays, lists, stacks, and queues)

– For example, there are generic collection classes for lists, which are dynamic length

array, stacks, queues, and dictionaries (has table)

– All of these predefined generic collections have built-in iterator that are used implicitly

with the foreach statement

– Furthermore, users can define their own collections and write their own iterators,

implement the IEnumerator interface, which enables the use of use foreach on these

collections

List<String> names = new List<String>();

names.Add("Bob");

names.Add("Carol");

names.Add("Ted");

foreach (Strings name in names)

Console.WriteLine (name);

CMPS401 Class Notes (Chap08) Page 14 / 17 Dr. Kuo-pao Yang

8.4 Unconditional Branching 355

• An unconditional branch statement transfers execution control to a specified place in the

program

• The unconditional branch, or goto, is the most powerful statement for controlling the flow of

execution of a program’s statements

• However, using the goto carelessly can lead to serious problems

• Without restrictions on use, imposed by either language design or programming standards,

goto statements can make programs very difficult to read, and as a result, highly unreliable

and costly to maintain

• There problems follow directly from a goto’s ability to force any program statement to

follow any other in execution sequence, regardless of whether the statement proceeds or

follows previously executed statement in textual order

• Java, Python, and Ruby do not have a goto. However, most currently popular languages

include a goto statement

• C# uses goto in the switch statement

CMPS401 Class Notes (Chap08) Page 15 / 17 Dr. Kuo-pao Yang

8.5 Guarded Commands 356

• New and quite different forms of selection and loop structures were suggested by Dijkstra

(1975)

• His primary motivation was to provide control statements that would support a new program

design methodology that ensured correctness (verification) during development rather than

when verifying or testing completed programs

• Basis for two linguistic mechanisms for concurrent programming in CSP (Hoare, 1978)

• Basic idea: if the order of evaluation is not important, the program should not specify one

• Dijkstra’s selection guarded command has the form

if <Boolean expr> -> <statement>

[] <Boolean expr> -> <statement>

 ...

[] <Boolean expr> -> <statement>

fi

• Semantics: when construct is reached,

– Evaluate all Boolean expressions

– If more than one are true, choose one non-deterministically

– If none are true, it is a runtime error

• Ex

if i = 0 -> sum := sum + i

[] i > j -> sum := sum + j

[] j > i -> sum := sum + i

fi

– If i = 0 and j > i, this statement chooses non-deterministically between the first and

third assignment statements

– If i is equal to j and is not zero, a run-time error occurs because none of the condition are

true

• Ex

if x >= y -> max := x

[] y >= x -> max := y

fi

– This computes the desired result without over specifying the solution

– In particular, if x and y are equal, it does not matter which we assign to max

– This is a form of abstraction provide by the non-deterministic semantics of the statement

CMPS401 Class Notes (Chap08) Page 16 / 17 Dr. Kuo-pao Yang

• The loop structure proposed by Dijkstra has the form

do <Boolean> -> <statement>

[] <Boolean> -> <statement>

 ...

[] <Boolean> -> <statement>

od

• Semantics: for each iteration

– Evaluate all Boolean expressions

– If more than one are true, choose one non-deterministically; then start loop again

– If none are true, exit loop

• Ex Consider the following problem: Given four integer variables, q1, q2, q3, and q4,

rearrange the values of the four so that q1 ≤ q2 ≤ q3 ≤ q

– Without guarded commands, one straightforward solution is to put the four values into

an array, sort the array, and then assign the values from the array back into the scalar

variables q1, q2, q3, and q4. While this solution is not difficult, it requires a good deal of

code, especially if the sort process must be included.

– Now, uses guarded commands to solve the same problem but in a more concise and

elegant way

do q1 > q2 -> temp := q1; q1 := q2; q2 := temp;

[] q2 > q3 -> temp := q2; q2 := q3; q3 := temp;

[] q3 > q4 -> temp := q3; q3 := q4; q4 := temp;

od

• Dijkstra’s guarded command control statements are interesting, in part because they

illustrate how the syntax and semantics of statements can have an impact on program

verification and vice versa.

• Program verification is impossible when goto statements are used

• Verification is greatly simplified if

– only selection and logical pretest loops

– only guarded commands

CMPS401 Class Notes (Chap08) Page 17 / 17 Dr. Kuo-pao Yang

Summary 360

• Control statements occur in several categories:

– Selection Statements

– Iterative Statements

– Unconditional branching

• The switch statement of the C-based languages is representative of multiple-selection

statements

• C’s for statement is the most flexible iteration statement although its flexibility lead to some

reliability problem

• Data-based iterators are loop statements for processing data structures, such as linked lists,

hashes, and trees.

– The for statement of the C-based languages allows the user to create iterators for user-

defined data

– The foreach statement of Perl and C# is a predefined iterator for standard data structure

• The unconditional branch, or goto, is the most powerful statement for controlling the flow of

execution of a program’s statements

– The unconditional branch, or goto, has been part of most imperative languages

– Its problems have been widely discussed and debated.

– The current consensus is that it should remain in most languages but that its dangers

should be minimized through programming discipline

• Dijkstra’s guarded commands are alternative control statement with positive theoretical

characteristics.

– Although they have not been adopted as the control statements of a language, part of the

semantics appear in the concurrency mechanisms of CSP and the function definitions of

Haskell

