

CMPS401 Class Notes (Chap05) Page 1 / 21 Dr. Kuo-pao Yang

Chapter 5

Names, Bindings, and Scopes

5.1 Introduction 198

5.2 Names 199

5.3 Variables 200

5.4 The Concept of Binding 203

5.5 Scope 211

5.6 Scope and Lifetime 222

5.7 Referencing Environments 223

5.8 Named Constants 224

Summary • Review Questions • Problem Set • Programming Exercises 227

CMPS401 Class Notes (Chap05) Page 2 / 21 Dr. Kuo-pao Yang

Chapter 5

Names, Bindings, and Scopes

5.1 Introduction 198

• Imperative languages are abstractions of von Neumann architecture

– Memory: stores both instructions and data

– Processor: provides operations for modifying the contents of memory

• Variables are characterized by a collection of properties or attributes

– The most important of which is type, a fundamental concept in programming languages

– To design a type, must consider scope, lifetime, type checking, initialization, and type

compatibility

5.2 Names 199

5.2.1 Design issues

• The following are the primary design issues for names:

– Maximum length?

– Are names case sensitive?

– Are special words reserved words or keywords?

5.2.2 Name Forms

• A name is a string of characters used to identify some entity in a program.

• Length

– If too short, they cannot be connotative

– Language examples:

▪ FORTRAN I: maximum 6

▪ COBOL: maximum 30

▪ C99: no limit but only the first 63 are significant; also, external names are limited to a

maximum of 31

▪ C# and Java: no limit, and all characters are significant

▪ C++: no limit, but implementers often impose a length limitation because they do not

want the symbol table in which identifiers are stored during compilation to be too

large and also to simplify the maintenance of that table.

• Names in most programming languages have the same form: a letter followed by a string

consisting of letters, digits, and (_). Although the use of the _ was widely used in the 70s and

80s, that practice is far less popular.

• C-based languages (C, Objective-C, C++, Java, and C#), replaced the _ by the “camel”

notation, as in myStack.

CMPS401 Class Notes (Chap05) Page 3 / 21 Dr. Kuo-pao Yang

• Prior to Fortran 90, the following two names are equivalent:

Sum Of Salaries // names could have embedded spaces

SumOfSalaries // which were ignored

• Special characters

– PHP: all variable names must begin with dollar signs $

– Perl: all variable names begin with special characters $, @, or %, which specify the

variable’s type

▪ if a name begins with $ is a scalar, if a name begins with @ it is an array, if it begins

with %, it is a hash structure

– Ruby: variable names that begin with @ are instance variables; those that begin with @@

are class variables

• Case sensitivity

– Disadvantage: readability (names that look alike are different)

– Names in the C-based languages are case sensitive

– Worse in C++, Java, and C# because predefined names are mixed case (e.g.

IndexOutOfBoundsException)

– In C, however, exclusive use of lowercase for names.

▪ C, C++, and Java names are case sensitive ➔ rose, Rose, ROSE are distinct names

“What about Readability”

5.2.3 Special words

• An aid to readability; used to delimit or separate statement clauses

• A keyword is a word that is special only in certain contexts.

• Ex: Fortran

Real Apple // Real is a data type followed with a name,

therefore Real is a keyword

Real = 3.4 // Real is a variable name

• Disadvantage: poor readability. Compilers and users must recognize the difference.

• A reserved word is a special word that cannot be used as a user-defined name.

• Potential problem with reserved words: If there are too many, many collisions occur (e.g.,

COBOL has 300 reserved words!)

• As a language design choice, reserved words are better than keywords.

• Ex: In Fortran, they are only keywords, which means they can be redefined. One could have

the statements:

Integer Real // keyword “Integer” and variable “Real”

Real Integer // keyword “Real” and variable “Integer”

CMPS401 Class Notes (Chap05) Page 4 / 21 Dr. Kuo-pao Yang

5.3 Variables 200

• A variable is an abstraction of a memory cell.

• Variables can be characterized as a sextuple of attributes:

– Name

– Address

– Value

– Type

– Lifetime

– Scope

• Name

– Not all variables have names: Anonymous, heap-dynamic variables

• Address

– The memory address with which it is associated

– A variable may have different addresses at different times during execution. If a

subprogram has a local var that is allocated from the run time stack when the subprogram

is called, different calls may result in that var having different addresses.

– The address of a variable is sometimes called its l-value because that is what is required

when a variable appears in the left side of an assignment statement.

• Aliases

– If two variable names can be used to access the same memory location, they are called

aliases

– Aliases are created via pointers, reference variables, C and C++ unions.

– Aliases are harmful to readability (program readers must remember all of them)

• Type

– Determines the range of values of variables and the set of operations that are defined for

values of that type; in the case of floating point, type also determines the precision.

– For example, the int type in Java specifies a value range of -2147483648 to 2147483647,

and arithmetic operations for addition, subtraction, multiplication, division, and modulus.

• Value

– The value of a variable is the contents of the memory cell or cells associated with the

variable.

– Abstract memory cell - the physical cell or collection of cells associated with a variable.

– A variable’s value is sometimes called its r-value because that is what is required when a

variable appears in the right side of an assignment statement.

▪ The l-value of a variable is its address.

▪ The r-value of a variable is its value.

CMPS401 Class Notes (Chap05) Page 5 / 21 Dr. Kuo-pao Yang

5.4 The Concept of Binding 203

• A binding is an association, such as between an attribute and an entity, or between an

operation and a symbol.

• Binding time is the time at which a binding takes place.

• Possible binding times:

– Language design time: bind operator symbols to operations.

▪ For example, the asterisk symbol (*) is bound to the multiplication operation.

– Language implementation time:

▪ A data type such as int in C is bound to a range of possible values.

– Compile time: bind a variable to a particular data type at compile time.

– Load time: bind a variable to a memory cell (ex. C static variables)

– Runtime: bind a nonstatic local variable to a memory cell.

5.4.1 Binding of Attributes to Variables

• A binding is static if it first occurs before run time and remains unchanged throughout

program execution.

• A binding is dynamic if it first occurs during execution or can change during execution of

the program.

5.4.2 Type Bindings

5.4.2.1 Static Type Bindings

• If static, the type may be specified by either an explicit or an implicit declaration.

• An explicit declaration is a program statement used for declaring the types of variables.

• An implicit declaration is a default mechanism for specifying types of variables (the first

appearance of the variable in the program.)

• Both explicit and implicit declarations create static bindings to types.

• Fortran, PL/I, Basic, and Perl provide implicit declarations.

• EX:

– In Fortran, an identifier that appears in a program that is not explicitly declared is

implicitly declared according to the following convention:

I, J, K, L, M, or N or their lowercase versions is implicitly declared to be Integer

type; otherwise, it is implicitly declared as Real type.

– Advantage: writability.

– Disadvantage: reliability suffers because they prevent the compilation process from

detecting some typographical and programming errors.

– In Fortran, vars that are accidentally left undeclared are given default types and

unexpected attributes, which could cause subtle errors that, are difficult to diagnose.

– Less trouble with Perl: Names that begin with $ is a scalar, if a name begins with @ it is

an array, if it begins with %, it is a hash structure.

– In this scenario, the names @apple and %apple are unrelated.

CMPS401 Class Notes (Chap05) Page 6 / 21 Dr. Kuo-pao Yang

• Type Inference: Some languages use type inferencing to determine types of variables

(context)

– C# - a variable can be declared with var and an initial value. The initial value sets the

type

var sum = 0; // sum is int

var total = 0.0; // total is float

var name = “Fred”; // name is string

– Visual Basic, ML, Haskell, and F# also use type inferencing. The context of the

appearance of a variable determines its type

5.4.2.2 Dynamic Type Bindings

• With dynamic type binding, the type of a variable is not specified by a declaration statement,

nor can it be determined by the spelling of its name. Instead, the variable is bound to a type

when it is assigned a value in an assignment statement.

• Dynamic Type Binding: In Python, Ruby, JavaScript, and PHP, type binding is dynamic

• Specified through an assignment statement

• Ex, JavaScript

list = [2, 4.33, 6, 8]; ➔ single-dimensioned array

list = 47; ➔ scalar variable

• Advantage: flexibility (generic program units)

• Disadvantages:

– High cost (dynamic type checking and interpretation)

▪ Dynamic type bindings must be implemented using pure interpreter not compilers.

▪ Pure interpretation typically takes at least 10 times as long as to execute equivalent

machine code.

– Type error detection by the compiler is difficult because any variable can be assigned a

value of any type.

▪ Incorrect types of right sides of assignments are not detected as errors; rather, the type

of the left side is simply changed to the incorrect type.

▪ Ex, JavaScript

i, x ➔ Integer

y ➔ floating-point array

i = x; ➔ what the user meant to type

but because of a keying error, it has the assignment statement

i = y; ➔ what the user typed instead

▪ No error is detected by the compiler or run-time system. i is simply changed to a

floating-point array type. Hence, the result is erroneous. In a static type binding

language, the compiler would detect the error and the program would not get to

execution.

CMPS401 Class Notes (Chap05) Page 7 / 21 Dr. Kuo-pao Yang

5.4.3 Storage Bindings and Lifetime

• Allocation - getting a cell from some pool of available cells.

• Deallocation - putting a cell back into the pool.

• The lifetime of a variable is the time during which it is bound to a particular memory cell.

So the lifetime of a var begins when it is bound to a specific cell and ends when it is unbound

from that cell.

• Categories of variables by lifetimes:

– static,

– stack-dynamic,

– explicit heap-dynamic, and

– implicit heap-dynamic

5.4.3.1 Static Variables

• Static variables are bound to memory cells before execution begins and remains bound to the

same memory cell throughout execution

• e.g. all FORTRAN 77 variables, C static variables in functions

• Advantages:

– Efficiency (direct addressing): All addressing of static vars can be direct. No run-time

overhead is incurred for allocation and deallocation of static variables.

– History-sensitive: have vars retain their values between separate executions of the

subprogram.

• Disadvantage:

– Storage cannot be shared among variables.

– Ex: if two large arrays are used by two subprograms, which are never active at the same

time, they cannot share the same storage for their arrays.

5.4.3.2 Stack-dynamic Variables

• Storage bindings are created for variables when their declaration statements are elaborated,

but whose types are statically bound.

• Elaboration of such a declaration refers to the storage allocation and binding process

indicated by the declaration, which takes place when execution reaches the code to which the

declaration is attached.

• The variable declarations that appear at the beginning of a Java method are elaborated when

the method is invoked and the variables defined by those declarations are deallocated when

the method completes its execution.

• Stack-dynamic variables are allocated from the run-time stack.

• If scalar, all attributes except address are statically bound.

– Local variables in C subprograms and Java methods.

• Advantages:

– Allows recursion: each active copy of the recursive subprogram has its own version of

the local variables.

– In the absence of recursion, it conserves storage b/c all subprograms share the same

memory space for their locals.

CMPS401 Class Notes (Chap05) Page 8 / 21 Dr. Kuo-pao Yang

• Disadvantages:

– Overhead of allocation and deallocation.

– Subprograms cannot be history sensitive.

– Inefficient references (indirect addressing) is required b/c the place in the stack where a

particular var will reside can only be determined during execution.

• In Java, C++, and C#, variables defined in methods are by default stack-dynamic.

5.4.3.3 Explicit Heap-dynamic Variables

• Nameless memory cells that are allocated and deallocated by explicit directives “run-time

instructions”, specified by the programmer, which take effect during execution.

• These vars, which are allocated from and deallocated to the heap, can only be referenced

through pointers or reference variables.

• The heap is a collection of storage cells whose organization is highly disorganized b/c of the

unpredictability of its use.

• e.g. Dynamic objects in C++ (via new and delete)

int *intnode; // create a pointer

. . .

intnode = new int; // allocates the heap-dynamic variable

. . .

delete intnode; // deallocates the heap-dynamic variable

 // to which intnode points

– An explicit heap-dynamic variable of int type is created by the new operator.

– This operator can be referenced through the pointer, intnode.

– The var is deallocated by the delete operator.

• In Java, all data except the primitive scalars are objects.

– Java objects are explicitly heap-dynamic and are accessed through reference variables.

– Java uses implicit garbage collection.

• Explicit heap-dynamic vars are used for dynamic structures, such as linked lists and trees that

need to grow and shrink during execution.

• Advantage:

– Provides for dynamic storage management.

• Disadvantage:

– Inefficient “Cost of allocation and deallocation” and unreliable “difficulty of using

pointer and reference variables correctly”

CMPS401 Class Notes (Chap05) Page 9 / 21 Dr. Kuo-pao Yang

5.4.3.4 Implicit Heap-dynamic Variables

• Bound to heap storage only when they are assigned value. Allocation and deallocation caused

by assignment statements.

• All their attributes are bound every time they are assigned.

• e.g. all variables in APL; all strings and arrays in Perl and JavaScript, and PHP.

• Ex, JavaScript

highs = [74, 84, 86, 90, 71]; ➔ an array of 5 numeric values

• Advantage:

– Flexibility allowing generic code to be written.

• Disadvantages:

– Inefficient, because all attributes are dynamic “run-time.”

– Loss of error detection by the compiler.

CMPS401 Class Notes (Chap05) Page 10 / 21 Dr. Kuo-pao Yang

5.5 Scope 211

• The scope of a variable is the range of statements in which the variable is visible.

• A variable is visible in a statement if it can be referenced in that statement.

• Local variable is local in a program unit or block if it is declared there.

• Non-local variable of a program unit or block are those that are visible within the program

unit or block but are not declared there.

5.5.1 Static Scope

• ALGOL 60 introduced the method of binding names to non-local vars is called static

scoping.

• Static scoping is named because the scope of a variable can be statically determined – that is

prior to execution.

• This permits a human program reader (and a compiler) to determine the type of every

variable in the program simply by examining its source code.

• There are two categories of static scoped languages:

– Nested Subprograms.

– Subprograms that cannot be nested.

• Ada, and JavaScript, Common Lisp, Scheme, F#, and Python allow nested subprograms, but

the C-based languages do not.

• When a compiler for static-scoped language finds a reference to a var, the attributes of the

var are determined by finding the statement in which it was declared.

• For example:

– Suppose a reference is made to a var x in subprogram sub1. The correct declaration is

found by first searching the declarations of subprogram sub1.

– If no declaration is found for the var there, the search continues in the declarations of the

subprogram that declared subprogram sub1, which is called its static parent.

▪ If a declaration of x is not found there, the search continues to the next larger

enclosing unit (the unit that declared sub1’s parent), and so forth, until a declaration

for x is found or the largest unit’s declarations have been searched without success.

➔ an undeclared var error has been detected.

– The static parent of subprogram sub1, and its static parent, and so forth up to and

including the main program, are called the static ancestors of sub1.

• Ex: JavaScript function, big, in which the two functions sub1 and sub2 are nested:

function big() {

 function sub1() {

 var x = 7;

 sub2();

 }

 function sub2() {

 var y = x;

 }

 var x = 3;

 sub1();

}

CMPS401 Class Notes (Chap05) Page 11 / 21 Dr. Kuo-pao Yang

• Under static scoping, the reference to the variable x in sub2 is to the x declared in the

procedure big.

– This is true because the search for x begins in the procedure in which the reference

occurs, sub2, but no declaration for x is found there.

– The search thus continues in the static parent of sub2, big, where the declaration of x is

found.

– The x declared in sub1 is ignored, because it is not in the static ancestry of sub2.

• The variable x is declared in both big and sub1, which is nested inside big.

– Within sub1, every simple reference to x is to the local x.

– The outer x is hidden from sub1

CMPS401 Class Notes (Chap05) Page 12 / 21 Dr. Kuo-pao Yang

5.5.2 Blocks

• From ALGOL 60, allows a section of code to have its own local variables whose scope is

minimized.

• Such variables are stack dynamic, so they have their storage allocated when the section is

entered and deallocated when the section is exited.

• The C-based languages allow any compound statement (a statement sequence surrounded by

matched braces) to have declarations and thereby defined a new scope.

• Ex: Skeletal C function:

void sub() {

 int count;

 . . .

 while (. . .) {

 int count;

 count ++;

 . . .

 }

 . . .

}

• The reference to count in the while loop is to that loop’s local count. The count of sub is

hidden from the code inside the while loop.

• A declaration for a var effectively hides any declaration of a variable with the same name in

a larger enclosing scope.

• Note that this code is legal in C and C++ but illegal in Java and C#

• Most functional languages (Scheme, ML, and F#) include some form of let construct

• A let construct has two parts

– The first part binds names to values

– The second part uses the names defined in the first part

• Ex. Scheme:

 (LET (

 (name1 expression1)

 . . .

 (namen expressionn))

 expression

)

– Consider the following call to LET:

 (LET (

 (top (+ a b))

 (bottom (- c d)))

 (/ top bottom)

)

– This call computes and returns the value of the expression (a + b) / (c – d)

CMPS401 Class Notes (Chap05) Page 13 / 21 Dr. Kuo-pao Yang

5.5.3 Declaration Order

• C99, C++, Java, and C# allow variable declarations to appear anywhere a statement can

appear

• In C99, C++, and Java, the scope of all local variables is from the declaration to the end of

the block

• In C#, the scope of any variable declared in a block is the whole block, regardless of the

position of the declaration in the block

• However, a variable still must be declared before it can be used

• For example, consider the following C# code:

{int x;

 . . .

 {int x; // Illegal

 . . .

 }

 . . .

}

– Because the scope of a declaration is the whole block, the following nested declaration of

x is also illegal:

{

 . . .

 {int x; // Illegal

 . . .

 }

 int x;

}

– Note that C# stall requires that all be declared before they are used

• In C++, Java, and C#, variables can be declared in for statements

– The scope of such variables is restricted to the for construct

void fun() {

 . . .

 for (int count = 0; count < 10; count++) {

 . . .

 }

 . . .

}

– The scope of count is from the for statement to the end of for its body (the right brace)

CMPS401 Class Notes (Chap05) Page 14 / 21 Dr. Kuo-pao Yang

5.5.4 Global Scope

• C, C++, PHP, and Python support a program structure that consists of a sequence of function

definitions in a file

– These languages allow variable declarations to appear outside function definitions

• For example, C and C++ have both declarations and definitions of global data

– A declaration outside a function definition specifies that it is defined in another file

– A global variable in C is implicitly visible in all subsequent functions in the file.

– A global variable that is defined after a function can be made visible in the function by

declaring it to be external, as the in the following:

extern int sum;

• PHP

– Programs are embedded in HTML markup documents, in any number of fragments, some

statements and some function definitions

– Any variable that is implicitly declared outside any function is a global variable

– variables implicitly declared in functions are local variables.

– The scope of global variables extends from their declarations to the end of the program

but skips over any subsequent function definitions.

– Global variables are not implicitly visible in any function. Global variables can be made

visible in functions in their scope in two ways:

▪ (1) If the function includes a local variable with the same name as a global, that

global can be accessed through the $GLOBALS array, using the name of the global

as a string literal subscript, and

▪ (2) if there is no local variable in the function with the same name as the global, the

global can be made visible by including it in a global declaration statement.

– Consider the following example:

$day = "Monday";

$month = "January";

function calendar() {

 $day = "Tuesday";

 global $month;

 print "local day is $day ";

 $gday = $GLOBALS['day'];

 print "global day is $gday <br \>";

 print "global month is $month ";

}

calendar();

Interpretation of this code produces the following:

local day is Tuesday

global day is Monday

global month is January

CMPS401 Class Notes (Chap05) Page 15 / 21 Dr. Kuo-pao Yang

• JavaScript

– The global variables of JavaScript are very similar to those of PHP, except that there is

no way to access a global variable in a function that has declared a local variable with the

same name.

5.5.5 Evaluation of Static Scoping

• Works well in many situations

• Problems:

– In most cases, it allows more access to both variables and subprograms that is necessary

– As a program evolves, the initial structure is destroyed and local variables often become

global; subprograms also gravitate toward become global, rather than nested

• An alternative to the use of static scoping to control access to variables and subprograms is

an encapsulation construct.

CMPS401 Class Notes (Chap05) Page 16 / 21 Dr. Kuo-pao Yang

5.5.6 Dynamic Scope

• The scope of variables in APL, SNOBOL4, and the early versions of LISP is dynamic. Perl

and Common Lisp also allow variables to be declared to have dynamic scope, although the

default scoping mechanism is these languages is static.

• Dynamic Scoping is based on calling sequences of program units, not their textual layout

(temporal versus spatial) and thus the scope is determined only at run time.

• References to variables are connected to declarations by searching back through the chain of

subprogram calls that forced execution to this point.

• Ex: Consider again the function big from Section 5.5.1, which the two functions sub1 and

sub2 are nested:

function big() {

 function sub1() {

 var x = 7;

 . . .

 }

 function sub2() {

 var y = x;

 . . .

 }

 var x = 3;

 . . .

}

• Consider the two different call sequences for sub2:

– big calls sub2 and sub2 use x

▪ The dynamic parent of sub2 is big. The reference is to the x in big.

– big calls sub1, sub1 calls sub2, and sub2 use x

▪ The search proceeds from the local procedure, sub2, to its caller, sub1, where a

declaration of x is found.

– Note that if static scoping was used, in either calling sequence the reference to x in sub2

is to big’s x.

5.5.7 Evaluation of Static Scoping

• Advantage: convenience

• Disadvantages:

– While a subprogram is executing, its variables are visible to all subprograms it calls

– Inability to type check references to nonlocals statically

– Difficult to read, because the calling sequence of subprograms must be known to

determine the meaning of references to nonlocal variables

– Finally, accesses to nonlocal variables in dynamic-scoped languages take for longer than

access to nonlocals when static scoping is used

CMPS401 Class Notes (Chap05) Page 17 / 21 Dr. Kuo-pao Yang

5.6 Scope and Lifetime 222

• Scope and lifetime are sometimes closely related, but are different concepts

• For example, In a Java method

– The scope of such a variable is from its declaration to the end of the method

– The lifetime of that variable is the period of time beginning when the method is entered

and ending when execution of the method terminates

• Consider a static variable in a C or C++ function

– Statically bound to the scope of that function and is also statically bound to storage

– Its scope is static and local to the function, but its lifetime extends over the entire

execution of the program of which it is a part

• Ex: C++ functions

void printheader() {

 . . .

} /* end of printheader */

void compute() {

 int sum;

 . . .

 printheader();

} /* end of compute */

– The scope of sum in contained within compute function

– The lifetime of sum extends over the time during which printheader executes.

– Whatever storage location sum is bound to before the call to printheader, that binding

will continue during and after the execution of printheader.

CMPS401 Class Notes (Chap05) Page 18 / 21 Dr. Kuo-pao Yang

5.7 Referencing Environments 223

• The referencing environment of a statement is the collection of all names that are visible in

the statement

• In a static-scoped language, it is the local variables plus all of the visible variables in all of

the enclosing scopes

• The referencing environment of a statement is needed while that statement is being compiled,

so code and data structures can be created to allow references to variables from other scopes

during run time.

• A subprogram is active if its execution has begun but has not yet terminated.

• In a dynamic-scoped language, the referencing environment is the local variables plus all

visible variables in all active subprograms.

• Ex, Python skeletal, static-scoped language

g = 3; # A global

def sub1():

 a = 5; # Crates a local

 b = 6; # Crates another local

 . . .  1

 def sub2():

 global g; # Global g is now assignable here

 c = 9; # Creates a new local

 . . .  2

 def sub3():

 nonlocal c; # Makes nonlocal c visible here

 g = 11; # Creates a new local

 . . .  3

• The referencing environments of the indicated program points are as follows:

Point Referencing Environment

1 local a and b (of sub1), global g for reference, but not for assignment

2 local c (of sub2), global g for both reference and for assignment

 Note: a and b (of sub1) for reference, but not for assignment

3 nonlocal c (of sub2), local g (of sub3)

 Note: a and b (of sub1) for reference, but not for assignment

CMPS401 Class Notes (Chap05) Page 19 / 21 Dr. Kuo-pao Yang

• Ex, Dynamic-scoped language

• Consider the following program; assume that the only function calls are the following: main

calls sub2, which calls sub1

 void sub1() {

 int a, b;

 . . .  1

 } /* end of sub1 */

 void sub2() {

 int b, c;

 . . .  2

 sub1();

 } /* end of sub2 */

 void main() {

 int c, d;

 . . .  3

 sub2();

 } /* end of main */

• The referencing environments of the indicated program points are as follows:

Point Referencing Environment

1 a and b of sub1, c of sub2, d of main (c of main, b of sub2 hidden)

2 b and c of sub2, d of main (c of main is hidden)

3 c and d of main

CMPS401 Class Notes (Chap05) Page 20 / 21 Dr. Kuo-pao Yang

5.8 Named Constants 224

• It is a variable that is bound to a value only at the time it is bound to storage; its value cannot

be change by assignment or by an input statement.

• Ex, Java

final int LEN = 100;

• Advantages: readability and modifiability

Variable Initialization

• The binding of a variable to a value at the time it is bound to storage is called initialization.

• Initialization is often done on the declaration statement.

• Ex, C++

 int sum = 0;

 int* ptrSum = ∑

 char name[] = “George Washington Carver”;

CMPS401 Class Notes (Chap05) Page 21 / 21 Dr. Kuo-pao Yang

Summary

• Variables are characterized by the 6 of attributes:

– Name

– Address

– Value

– Type

– Lifetime

– Scope

• Binding is the association of attributes with program entities. Binding can be static or

dynamic type binding.

– Static type binding:

▪ A binding is static if it first occurs before run time and remains unchanged

throughout program execution.

▪ Declaration either explicit or implicit, provide a means of specifying the static

binding of variables to types

– Dynamic type binding:

▪ A binding is dynamic if it first occurs during execution or can change during

execution of the program.

▪ It allows greater flexibility but at the expense of readability, efficiency, and reliability

o

• Scalar variables can be separated into 4 categories:

– Static Variables

– Stack Dynamic Variables

– Explicit Heap Dynamic Variables

– Implicit Heap Dynamic Variables

• The scope of a variable is the range of statements in which the variable is visible.

– Static scope:

▪ Static scoping is named because the scope of a variable can be statically determined

– that is prior to execution

▪ This permits a human program reader (and a compiler) to determine the type of every

variable in the program simply by examining its source code.

▪ It provides a simple, reliable, and efficient method of allowing visibility of nonlocal

variables in subprograms

– Dynamic scope:

▪ It is based on calling sequences of program units, not their textual layout and thus the

scope is determined only at run time.

▪ It provides more flexibility than static scoping but, again, at expense of readability,

reliability, and efficiency

